

VEGA-GEOGLAM Global agricultural monitoring service

User Guide

Version 1, 06/2017 Space Research Institute of Russian Academy of Sciences

Table of Contents

Table of Contents	
I. About VEGA-GEOGLAM	3
Possible Applications	5
Requirements	6
Contacts	6
II. Getting started	7
Home Page	7
Registration	8
Interface	9
Toolbar	
Groups of Tabs	
Setting up displaying options	
Base Maps	
Landcover Maps	
Map legend	
Map navigation	
Projections and Digital Elevation Models	
III. VEGA-GEOGLAM Data & Tools	
Satellite data	
High resolution data	
Moderate resolution data	
Cloud-free composites	
Radar data	
ISS data	
My products	
Field data	
SIGMA/JECAM testsites data	
Field monitoring tools	
Field creation	
Field passport	
Agricultural data group of tab	
Field vegetation state analysis	
Field status cartograms	
Vegetation state analysis by district	
Agricultural maps	
NDVI time series	
NDVI graph for the field	
Field comparison on NDVI	
NDVI graph for the region	
Fire data	
Meteorological data	
Data analysis tools	
Basket	
How to download an image	
Data comparison tools	
•	
Point objects Classification tool	
Indices calculation	
Band selection	
Palette	
IV. HOW-TOS	
Acronyms & Glossary	80

I. About VEGA-GEOGLAM

VEGA-GEOGLAM (<u>vega.geoglam.ru</u>) is a global agricultural monitoring service aimed to perform cropland mapping and assessment using Earth Observation (EO) and in-situ data analysis. The system developed by Space Research Institute (IKI) of Russian Academy of Sciences in the framework of European Commission's FP7 SIGMA project.

The VEGA-GEOGLAM objectives are:

- To provide users with EO data and their analysis tools for on-line cropland monitoring at multiple spatial levels;
- To combine EO and in-situ data analysis over the SIGMA-JECAM test sites;
- To serve as a platform for R&D activity focused on remote sensing method
- To serve as e-learning platform in the field of remote sensing and GIS applications for agricultural monitoring.

Figure 1: Main page and Map Interface of the VEGA-GEOGLAM portal. SIGMA/JECAM test-sites are delineated in red.

As a geographical data analysis web-service, VEGA-GEOGLAM covers a broad variety of agricultural monitoring applications focused at different types of users and levels - from a field to regions and countries. VEGA-GEOGLAM users are scientists, students, public officials, agricultural producers and insurance companies. List of potential VEGA-GEOGLAM applications presented in table 1.

A user can upload to VEGA-GEOGLAM data on field borders (and other attributive information) and monitor the crop conditions detecting anomalies and trends in crop development. A user can work with more than 1,5 Pb of pre-processed EO data and derived products, such as:

- Satellite Imagery and cloud-free image composites;
- Thematic maps;
- NDVI time series data;
- Meteorological data;
- Field data;
- Fires on agricultural and non-agricultural lands.

VEGA-GEOGLAM benefits:

- All-in-one there are two core components in VEGA-GEOGLAM: Data and Data Analysis Tools. VEGA-GEOGLAM gathers satellite and other geographic information from different sources and provides access to it along with tools for integrated on-line data analysis via the web-interface. VEGA-GEOGLAM aggregates data from different satellite instruments in the one interface;
- **On-line** to work with the EO data archive and GIS tools a user is not required to download any software or to deploy a network: all a user need is Internet and registration in the system;
- **Time series and trends** an access to the multi-year time series of EO data and automatically calculated multiannual NDVI norm (mean) providing an opportunity to assess crop development at local (field) and regional levels;
- **Ongoing updating** daily update of EO data archives with newly acquired data;
- **Scalability** VEGA-GEOGLAM is a continuously developing system. The modular architecture of the system allows fitting into new requirements and projects.

Applications

VEGA-GEOGLAM is designed to cover different agricultural monitoring applications based on EO data as presented in the Table 1.

Table 1. VEGA-GEOGLAM applications

Application	System capacities
Cropland monitoring	 Up-to-date EO data viewing and downloading (data from more than 15 satellites instruments are available); Creating of EO data time series for user defined area of interest; Land usage and crop development monitoring with visual image interpretation tools
Crop status assessment	 Using of weekly updated metrics (mean NDVI for a field, NDVI loss/gain and etc) for crop status assessment; Current NDVI value to norm value comparison and anomalies detection in crop development (norm is often defined as multiyear mean); Field vegetation development trend comparison; Field heterogeneity assessment;
Field usage history analysis	 Field usage history analysis for any period of time from year 2000; Field usage control through a season; Agricultural management practice assessment
Land cover and land use mapping	 Field borders delineation; Land cover mapping; Cropland and other agricultural land mapping: arable/non-arable lands, winter /spring crops, crop types.
Conditions assessment, adverse factors identification	 Meteorological condition assessment and forecasting; Agricultural management planning; Agricultural fires detection and impact assessment.
Yield estimation	 Crop development condition on a field comparison with other fields and with previous years; Crop development trend analysis; Yield predictors estimation.
Validation of the remote sensing methods over the SIGMA-JECAM test sites network	 In-situ data analysis; Joint experiments using VEGA-GEOGLAM data and tools; New EO data processing methods testing.
EO data dissemination	EO data export to other systems via API;
GIS / EO data users trainings	VEGA-GEOGLAM use as an educational platform

Basic Requirements

The service is freeware, but registration is needed. Basic requirements to use VEGA portal are:

- Internet connection >10 Mbps;
- Google Chrome or Mozilla Firefox browser (with cookies allowed);
- VEGA-GEOGLAM account.

Contacts

If you have any questions about VEGA-GEOGLAM or you have noticed a bug, please email us at **vega@smis.iki.rssi.ru**

Our team: http://smislab.ru/default.aspx?page=39

Links:

VEGA-GEOGLAM service http://vega.geoglam.ru

Space Research Institute of Russian Academy of Sciences <u>www.iki.rssi.ru/eng</u>

Stimulating Innovation for Global Monitoring of Agriculture <u>http://www.geoglam-sigma.info</u>

Group on Earth Observations Global Agricultural Monitoring Initiative http://www.webmodele.com/index.php/en/.

II. Getting started

Home Page

To start work with the service:

→ Go to <u>vega.geoglam.ru</u>

The VEGA-GEOGLAM home page (start page) opens (fig.2). There are five main sections at the Home Page:

1 - Registration link – click here to register. The Registration Page opens in new window;

2 - Login section - enter your Login/Password;

3 - Map interface - click here after logging in to open the system interface;

4 - As an option select any SIGMA-JECAM test site and you will be navigated to the specified region (Map interface opens);

5 - News feed - read about recent VEGA-GEOGLAM updates and events;

6 - Bug report – scroll down Home Page to see the Bug report link. This option allows sending a letter with a description of any bug or problem to the VEGA-GEOGLAM Administrator.

VEGA-GEC	Eng Pyc	
Web-based analysis to	Home Data Products Tools Download User Guide Contacts	
	Registration : Username: demo Password: Enter 2	
Map interface 3	Welcome to VEGA-GEOGLAM!	5 News
SIGMA-JECAM test sites: Image: Argentina - Antonio Areco Image: Argentina - Antonio Areco Image: Brazil - Para Image: Brazil - Sao Paulo Image: Brazil - Sao Paulo Image: Brazil - Tocantins Image: Brazil - Tocantins Image: Burkina Faso - Koumbia Image: China - Heilongjiang	The VEGA-GEOGLAM web-based analysis system is developed by <u>Russian Academy of Sciences Space Research Institute</u> in framework of EC FP7 <u>SIGMA</u> project. The VEGA-GEOGLAM is almed at providing tools for analysis of the Earth observation data, results of their processing and other related information with particular focus at SIGMA-JECAM test sites for agricultural monitoring focused R&D activities. The VEGA-GEOGLAM is implemented using the concept of geospatial information web-service gathering satellite and other geographic information from different sources and providing access to users worldwide. The VEGA-GEOGLAM is providing access to high-resolution (e.g. Landsat, DEIMOS) data over the JECAM sites, as well as to MODIS data along with various derived products. The VEGA-GEOGLAM provides access to near-real-time updated MODIS and Landsat data archives, DEIMOS data and other geospatial information collected over SIGMA-JECAM test-sites. The service performs automated pre-processing of MODIS and Landsat satellite data with daily update. The VEGA-GEOGLAM is focused at facilitating agricultural lands and crops state analysis using vegetation indices time-series based on its seasonal and multi-annual dynamics at every single point or user-specified polygons (objects).	10/12/2015 The Ministry of Sciences and Education of the Russian Federation allocated targeted extra funding for the R&D activity to support the GEOGLAM programme through collaboration of the Russian Academy of Sciences' Space Research Institute (IK1) and VITO within the EC FP7 SIGMA project. The initiated SIGMA- RBK project aimed at development of automated methods and information technologies of Earth observation data processing and analysis for agricultural monitoring with specific, but not exclusive, geographical focus on the Eurasian Economic Union countries, such as Russia, Belarus and Kazakhstan. The SIGMA-RBK project will be implemented during 2015-2017 in close coordination between IK1 and VITO and in collaboration with other the SIGMA
<u>China - Shangdong</u> <u>China - Taishan</u> <u>Ethiopia - West Shewa</u>	This tool is hence mainly positioned towards the partners of the SIGMA project. However the VEGA-GEOGLAM tool offers also access to this pre-processed data for a wider community. In particular the VEGA-GEOGLAM is used for analysis of satellite data for global monitoring of agricultural production and yield forecast in the framework of the <u>GEOGLAM Crop Monitor</u> .	08/05/2015 VEGA-GEOGLAM service User guide is now available at web-site main page. To download file in English in PDF format click the button User guide in the main menu or follow the <u>link</u> .
France - Belgium Madagascar - Antsirabe Russia - Stavropol Spain - Albacete YOTX ia - Rungwe	Bug report 6	23/04/2015 Russian Academy of Sciences' Space Research Institute (IKI) held on April 23, 2015 in Moscow the workshop focused on demonstration and discussion of recent developments within the global agricultural monitoring initiatives and projects, such as GEOGLAM, JECAM and SIGMA. The workshop has been attended by 41 participants representing the Russian Academy of Sciences' Institutions, Russian Space Agency,

Figure 2: VEGA-GEOGLAM Home Page.

Registration

To register:

- → Go to vega.geoglam.ru/registration.shtml;
- \rightarrow Read the User Agreement;
- \rightarrow Fill the **Registration Form** (fig.3, 1-10);
- \rightarrow You will receive a confirmation e-mail.

User groups

Users can belong to one group, which means that all users from this group can see the common user defined objects (fields) and data in the Map Interface. If you need to unit several users into one group or you need to assign different permissions to users from one group, please e-mail the system administrator at **vega@smis.iki.rssi.ru**.

Demo access

To evaluate the capabilities of VEGA-GEOGLAM try it without registration: use the demo/demo login and password. DEMO login parameters stay as a default on vega.geoglam.ru (fig.1 (2)).

DEMO users have some restrictions, such as not be able to view high-resolution EO data for the last month and

not be able to set (to draw) a field and view it's NDVI time series.

You can work with the demo fields (fig.4):

ightarrow Go to Agricultural data tab and turn on Fields contour checkbox;

 \rightarrow Navigate to 50.72 Lat 36.09 Lon (Belgorod Oblast (Region).

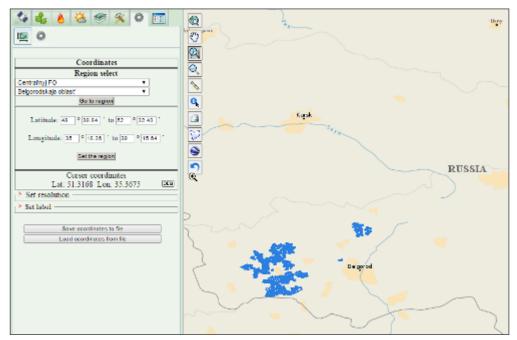


Figure 4: DEMO fields (group of fields that are available for demo access).

Login*: Create_your_login				
Enter password*:	•••••	2		
Confirm password*:	•••••	3		
First name*:	Example	4		
Last name*:	Test	5		
E-mail*:	test@test.ru	6		
Phone number:	+7(123)456-78-91	7		
Organization*:				
Organization Name and Country 8				
Fields marked with * , are required				
🗹 I accept user agreement 🧐				
Sign up 10				

Figure 3: Registration Form

Interface

After logging in, click the **Map interface** link on the main page (fig. 2(3)). Map Interface opens in new browser window (fig. 5).

VEGA-GEOGLAM Interface includes the following elements:

- 1. Map Window
- 2. Toolbar
- 3. Groups of Tabs
- 4. Tabs
- 5. Tab content
- 6. Scale
- 7. Minimap

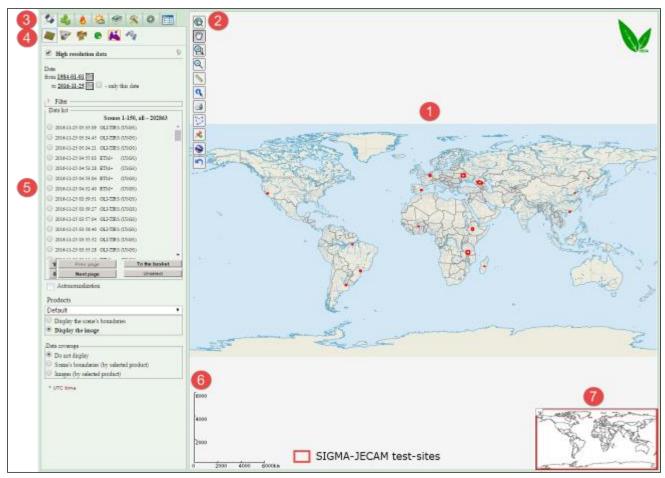
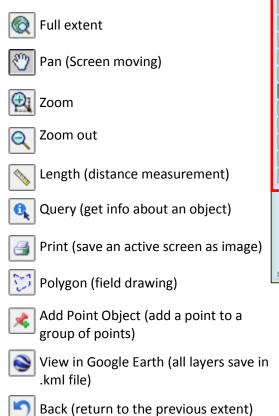



Figure 5: VEGA-GEOGLAM Map Interface.

Toolbar contains action tools (fig.6):

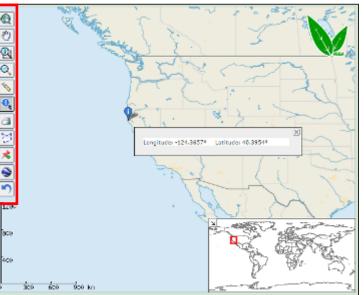


Figure 6: VEGA-GEOGLAM Toolbar. Query tool shows coordinates of the selected point.

Groups of Tabs

A user works with data and tools in VEGA-GEOGLAM through the Groups of Tabs. Each Group of Tabs contains thematic Tabs with various tools.

Figure 7: VEGA-GEOGLAM Group of tabs.

For detailed information about each Group of tab see the table 2.

! Tabs may overlay each other. If you cannot see some data (layer) on the map, try to turn off uncheck some tabs (to make it inactive).	** & * * * * * * * * * * * * * * * * *
	High resolution data

Table 2. Groups of Tabs description

Group of Tab	Description	Tabs
EO data	Find and select satellite images	 High resolution data Moderate resolution data Composite images Radar data My products Public products ISS (International Space Station) data
🍇 Agricultural data	Work with fields and agricultural maps on local and regional levels	 Field vegetation status analysis Vegetation statuse analysis at districts level Agricultural maps
と Fire data	Fire location by date	Group has no tabs
送 Meteorological data	Actual and historical weather data	Group has no tabs
Sase Maps Base Maps	Basic maps (county borders and thematic maps)	Base mapsLand cover maps
<u> S</u> Data Analysis	EO data processing and analysis tools	 Basket Image color enhancement Point objects Classification User maps Image algebra Indices calculation Band selection Irregularity of vegetation Palette
Navigation and Reprojection	Change projection and setting the coordinates of the area of interest	CoordinatesInterface parameters
Map Legend	Layer management	Group has no tabs

Setting up displaying options

Almost all operations in VEGA-GEOGLAM start with navigation to the area of interest (AOI) and setting up the displaying options. Before starting to work with satellite data in VEGA-GEOGLAM, a user can customize the interface by enabling or disabling base layers, enabling or disabling Grid or Scale, by changing a projection of a map.

There are two Groups of Tabs to manage visible map layers: Base Maps and Map Legend. Base Maps Tab allows you to turn on/off base maps. Map Legend Tab allows you to view all active layers.

Base Maps

ightarrow Go to Base Maps ightarrow Base Maps 🏁

 ✓ ♣ ♣ ఈ ♥ ♀ ♀ ✓ ♥ ♥ ✓ ■ <	Turn on/off the Base Map tab (displaying on the map)
Maps Cocan Land Urban areas Rivers and lakes Coastline Macro region borders Country borders Vater objects labels Cities Country names Grid Scale DigitalGlobe MapsAPI	List of the maps (layers). Country borders and a layer are displayed by default. The source of the most of the layers is Open Street Map (<u>www.openstreetmap.org</u>); Digital Globe Maps are mosaic of high-resolution satellite imagery provided by Digital Globe. Digital Globe Maps work only with Mercator projection.
Thematic maps Image: Comparison of the state stat	Thematic maps are represented by SIGMA-JECAM and JECAM test sites borders. They are marked in red squares on the map.

Figure 8: Digital Globe map

Land cover Maps

Land cover maps are categorical-type thematic maps derived from remote sensing images.

\rightarrow Go to Base Maps \rightarrow Landcover Maps

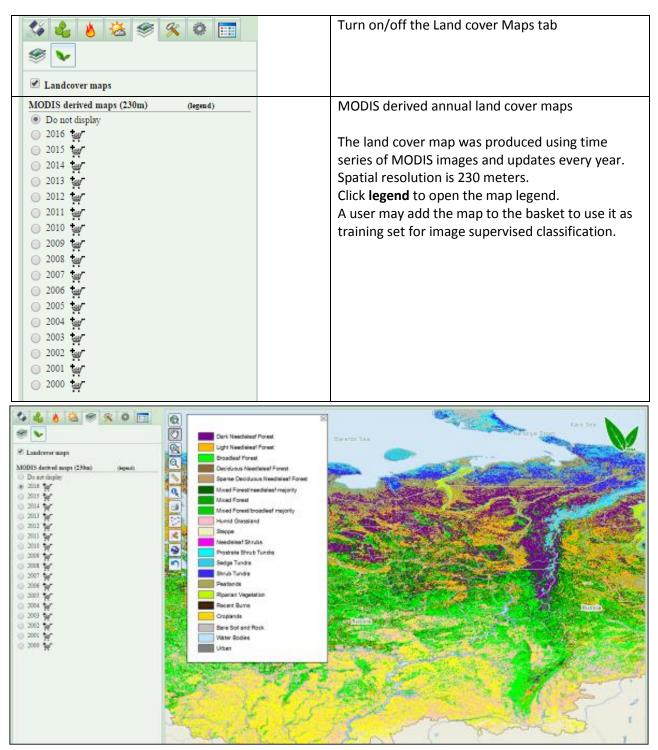


Figure 9: Land cover Map 2016. Southern Russia is agricultural belt of the country (in yellow).

Map legend

Map Legend Tab allows to view all active layers from all the tabs.

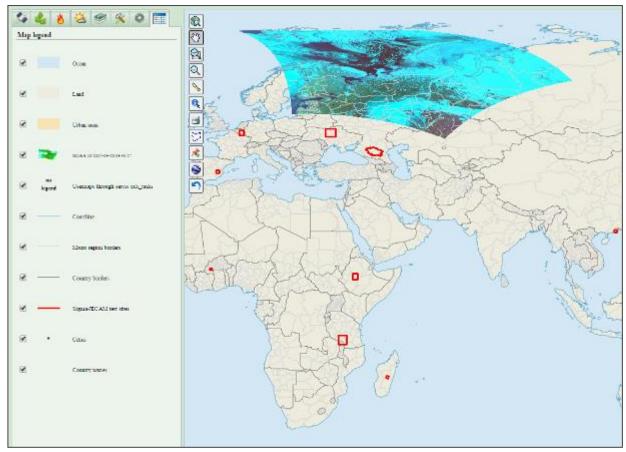


Figure 10: Map Legend Tab. NOAA image and the base layers are displayed.

Map navigation

There are two ways to find you area of interest (AOI) on the map in VEGA-GEOGLAM:

1. Manual navigation

Figure 11: Zooming in to AOI

→ Click Zoom In I and draw a rectangle around any area; → Use Zoom in- Zoom out (or mouse scroll) and Pan O; → If you need to step backward to the previous extent click Return O;

→ Use Query to get the coordinates of a point; → Full extent brings you to the world map.

2. Navigation with coordinate setting

\rightarrow Go to Navigation and Reprojection \rightarrow Coordinates $\stackrel{[min]}{\longrightarrow}$

There are four options:

- a) Search by Region
- b) Set the Range of coordinates
- c) Set the Label
- d) Load a file with coordinates

Image: Second select Coordinates Centraľnyj FO Belgorodskaja oblasť Go to region	 Turn on/off the Coordinates tab Search by region. → At the drop-down Region Select list first select the macro region, then the relevant region; → Click Go to region. You'll be navigated to the selected region.
Latitude: 49 ° 11.35 ′ to 51 ° 53.83 ′ Longitude: 35 ° 56.52 ′ to 39 ° 25.29 ′ Set the region	Set the Range of coordinates. If you want to open the specified extent, you can set the Range of coordinates.
Cursor coordinates Lat: 50.9029 Lon: 36.3449 [DEG]	Cursor coordinates
"" Set label Latitude: 0 ' or 50.5520 dec. Longitude: 0 ' or 36.4233 dec. Label: <u>Set</u>	Set the Label. Set Label option creates a label (pointer) map: use it if you know the coordinates of extent center (of the one point): → Open Set label block; → Set Latitude, Longitude, Label name; → click Set; → Zoom in to the label.
Save coordinates to file Load coordinates from file	Load a file with coordinates. You may save/load a file with coordinates of the visible extent. This instrument is useful when you work regularly with the same area. VEGA saves the visible extent in *.txt file. You can open, rename and resave this file to the proper folder.

Projections and Digital Elevation Models

\rightarrow Go to Navigation and Reprojection \rightarrow Interface parameters

Image: Second	Turn on/off the Interface parameters tab
Projection Mercator Geographic Mercator	Projection setting section.A map projection is a systematic transformation of the latitudes and longitudes of locations on the surface of a sphere or an ellipsoid into locations on a plane.There are two available projections in VEGA- GEOGLAM: Geographical and Mercator projections. Geographical projection is set as
Interface union date Date: <u>2017-05-05</u>	default.The interface union date.This option allows setting the union date for all the Tabs from Satellite Data and for Fires and Meteorological data tabs to simplify the data search.
 Digital elevation model overlay (SRTM) Digital elevation model overlay (ASTER v2) 	Digital Elevation Model. Digital Elevation Model (DEM) is a digital model or 3D representation of a terrain's surface. There are two digital elevation model overlays in VEGA-GEOGLAM: SRTM and ASTER v2. To set the DEM: → Go to Navigation and Reprojection → Interface parameters; → Select SRTM or ASTERv2 DEM.

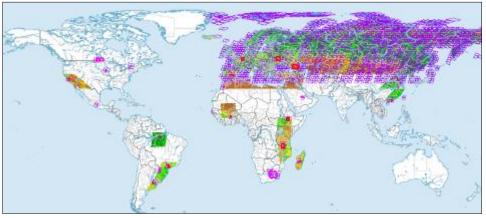
Figure 12: Digital elevation Model cover: a) ASTERv2, b) SRTM

250

Projection setting:

To switch to Mercator projection:

 \rightarrow Go to Navigation and Reprojection \rightarrow Interface parameters;


 \rightarrow At the **Projection** section in the drop-down list select Geographical or Mercator projection.

А

В

III. VEGA-GEOGLAM Data & Tools

Built as a geospatial information web-service, VEGA-GEOGLAM gathers EO data and other geographical information from different sources and provides access to it along with tools for integrated on-line data analysis to users worldwide. Figure below illustrates VEGA-GEOGLAM data coverage.

Figure 13: VEGA-GEOGLAM collects data over the all SIGMA/JECAM test-sites, which covers many agricultural valuable regions.

The EO data, available on VEGA-GEOGLAM, is described in table 3. VEGA-GEOGLAM is potentially open to include other EO data, which can be provided by the SIGMA project partners and under their requests.

Type of data	Description	VEGA-GEOGLAM Tab
Satellite Imagery	Satellite images are source of actual and reliable information. High, middle and low resolution images from different, including Russian satellites, are available. Users can choose image with filter and search tools for the area of interest. List of available satellite imagery see at Table 3.	Satellite data
NDVI time series	An access to the multi-year NDVI and meteorological data time series is one of the main advantages of VEGA-GEOGLAM. Data is cleaned and normalized by automatic algorithms; multi-year NDVI series are calculated. On the basis of such homogeneous data series, multiannual NDVI mean (the "norm" or the standard) for the development of different types of vegetation (winter and spring) is calculated. Crop development trend comparison with such norm, is, in turn, one of the key opportunities for the crop condition assessment.	<u>Graph Interface</u>
Meteorologi cal data	Downloaded 6 times a day from NCEP Reanalysis data set (source: <u>http://rda.ucar.edu/datasets/ds093.0/#metadata/grib2.html?_do=</u> <u>y</u>).Meteorological data is available at the level of user defined objects (fields) for the period from 2001 to current date. List of available meteorological data find at Table 5. All the data is downloadable in .CSV format.	<u>Meteorological data</u>
Field data	In-situ data includes data provided by project partners for the SIGMA-JECAM test sites (crop types, phenological phases, yield), national and sub-national information on agricultural statistics provided by project partners, field borders and other field information added by users to the "Passport of the Field".	Agricultural data

Table 3. VEGA-GEOGLAM data

Products (maps and masks)	This group includes base maps (country, county borders from OSM), digital elevation models and unique set of thematic maps created in Space Research Institute: maps of arable and non-arable lands, MODIS derived landcover maps and some other products.	<u>Satellite data, Base</u> <u>Maps</u>
Fires on agricultural and non- agricultural lands	Fire spots detected with MODIS Thermal Anomalies/Fire MOD14 product and combined into clusters using IKI technologies. A type, the borders, data start and finish of fire, amount of hectares are available for each "fire" object.	<u>Fires</u>

The data archive, based on satellite imagery, has been established since 2000 and updated every day. Images are downloaded from open image data archives as soon as they become available. Available data comes from external and internal sources, such as USGS, NCEP portals, Terrestrial Ecosystem Monitoring Laboratory of the Russian Space Research Institute. Satellite images are pre-processed (most of them go through atmospheric and radiometric corrections).

VEGA-GEOGLAM users have access to multispectral images, radar images, and images received from Russian satellites (see table 4). Available Earth Observation data has a spatial resolution in a range down to 1 meter.

The wide range of available images allows us to solve different tasks: there are frequently updated images, like MODIS images, that allow us to make seasonal sets of images and track the fields dynamically, to control the land usage. Also there are images with extremely high spatial resolution, where every spot is clearly visible, but the frequency of updates is relatively low - these kinds of images fit perfectly for image interpretation and border drawing, for land use map creation. The choice of the image depends on the task to be solved.

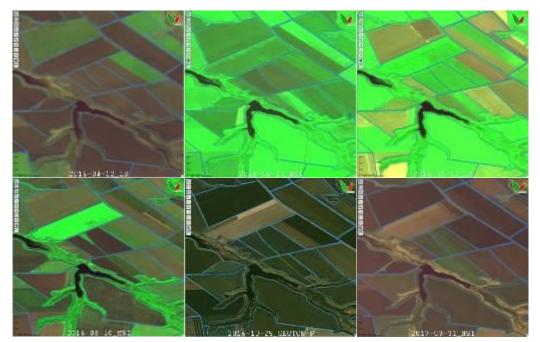


Figure 14: MSI Sentinel-2A images collection for the summer season 2016 in Kursk region. Satellite images allow users to assess visually field conditions, vegetation heterogeneity on the fields, to control the agricultural works, to detect the erosion processes dynamics and more.

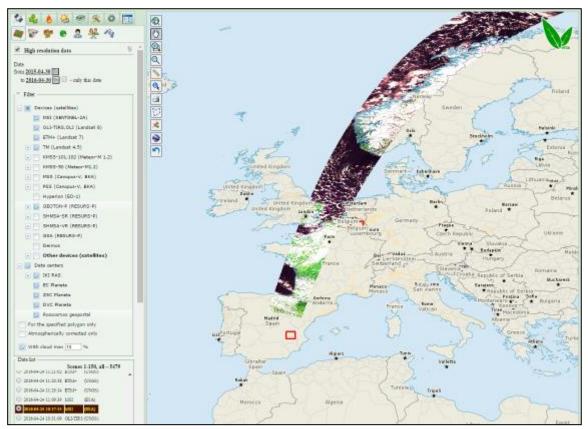
Table 4. VEGA-GEOGLAM EO data archive

Sensor	Satellite	Product	Downloadable	Spatial resolution	Comment
High resolution data					
Hyperion	Earth Observing 1 (EO-1)	L1 standard product	yes	30 m	Hyperspectrometer
TM, ETM+, OLI-TIRS	Landsat 4, 5, 7, 8	Level 1T standard product	no	15 m panchromatic, 30 m other bands	
SLIM-6	DEIMOS-1	L1T orthorectified product	no	22 m	Commercial satellite, data is contributed for the project
MSS, PSS	Canopus-V	L1 standard product	yes	2.1 m panchromatic, 10.5 m other bands	
KMSS-50,101,102	METEOR-M1,M2	L1A standard product	yes	60-120 m depending on the band	
GEOTON-P, SHMSA- SR, SHMSA-VR, GSA	Resurs-P	L1 standard product	yes	GEOTON-P: 70 cm panchromatic, 3-5 m other bands. SHMSA-SR: 60 m panchromatic, 120 m other bands. SHMSA-SR: 12 m panchromatic, 23.8 m other bands. GSA (hyperspectrometer): 25-30 m.	
MSI	Sentinel-2A		yes	10 - 60 m, depends on the band	
Moderate resolution d	ata				
MODIS	Aqua (EOS PM-1), Terra (EOS AM-1)	Level 1 Data Products	yes	250 m (bands 1-2), 500 m (bands 3-7), 1000 m (bands 8-36)	
AVHRR	NOAA (15-19)		no	1100 m	
MSU-MR	METEOP-M1,M2		no	1000 m	
VIIRS	Suomi-NPP		no	750 m	
Radar data					
C-SAR	Sentinel-1A, 1B		yes	Depends on the mode, from 4x5 m (stritmap mode)	
ASAR 12.5m, 75m	Envisat		yes	30 m	
SAR	ERS-1		yes	25 m	

EO data

There is a special Group of tabs to work with Satellite Image Archive - Satellite Data. The tabs are:

- High resolution images
- Moderate resolution images
- Cloud-free composites
- Radar images
- My products
- Public products
- Data from ISS (International Space Station)



Here you can find and view satellite images and derived products, such as thematic band syntheses. Adding images to the Basket allows to download them and to work with them using VEGA-GEOGLAM tools.

Satellite data searching and viewing

The general steps to work with Satellite Data tabs are:

- 1. Navigate to your AOI;
- 2. Go to Satellite Data;
- 3. Depending on necessary resolution go to the appropriate tab;
- 4. Set search parameters using Filter (date, device, satellite, cloudiness);
- 5. Explore the search results and if there is suitable image:
- 6. Select the image in the Data list;
- 7. Turn on, if necessary, Autonormalization (histogram auto adjustment);
- 8. Select, if necessary, a product from the Products ("color" synthesis is set as default);
- 9. Put the image to the Basket;
- 10. Repeat steps 6-10 for other images, if necessary.

Figure 15: VEGA-GEOGLAM interface with an active High resolution data tab. MSI Sentinel 2-A scene is selected.

High resolution (HR) data

 \rightarrow Go to **Satellite data** \rightarrow **High resolution data.** Here you can find and view Sentinel-2A. Landsat (4.5.7.8) Canopus-V and other HR satellite image

	Landsat (4,5,7,8) Canopus-V and other HR satellite imagery .	
🌠 📽 👌 😤 🦃 🛠 🔍 📰	Turn on/off the High resolution data tab. High resolution images tab has a displaying priority.	
🖉 🕼 🍨 e 💲 👫 🦄		
🗹 High resolution data 🦉 🄶		
Date	Date period to search images	
from <u>2017-01-01</u> to <u>2017-05-15</u> - only this date		
"" Filter	Satellite Filter :	
- Devices (satellites)		
MSI (SENTINEL-2A)		
<pre>OLI-TIRS,OLI (Landsat 8) ETM+ (Landsat 7)</pre>	1) Select required device (satellite);	
+ TM (Landsat 4,5)	2) Select data centers (sources of images);	
+ KMSS-101,102 (Meteor-M 1,2)	3) For the specified polygon inly – draw a polygon with the Draw	
KMSS-50 (Meteor-M1,2) MSS (Canopus-V, BKA)	tool to restrict the search extent;	
+ PSS (Canopus-V, BKA)		
Hyperion (EO-1)	4) Atmospherically corrected only – search images that were	
GEOTON-P (RESURS-P) SHMSA-SR (RESURS-P)	atmospherically corrected;	
+ SHMSA-VR (RESURS-P)	5) Set the cloudiness limit (for the entire scene).	
+ GSA (RESURS-P)		
Other devices (satellites)		
+ 🔲 Data centers		
For the specified polygon only Atmospherically corrected only		
With cloud max 10 %		
Data list	Search result list with the buttons:	
Scenes 1-10, all 10 2017-04-18 10:34:52 OLI-TIRS (USGS)		
O 2017-04-09 10:40:44 OLI-TIRS (USGS)	Next page, Previous page - to scroll result;	
 2017-03-25 10:37:16 ETM+ (USGS) 2017-03-17 10:35:08 OLI-TIRS (USGS) 	Unselect – unselect selected image;	
2017-03-16 10:43:24 ETM+ (USGS)	To the basket - put an image to the Basket.	
 2017-02-25 10:50:21 MSI (ESA) 2017-02-15 10:51:21 MSI (ESA) 		
 2017-02-15 10:51:21 MSI (ESA) 2017-01-26 10:53:21 MSI (ESA) 		
○ 2017-01-20 10:37:07 ETM+ (USGS)	Autonormalization option is image histogram auto adjustment.	
2017-01-19 10:41:21 OLI-TIRS (USGS)		
Prev page To the basket Image Unselect		
Autonormalization		
Products Default	Available derived product list for the chosen image: choose any	
Default Display the scene's boundaries	available product (see the description in <u>High resolution data</u>	
Display the image	Product list chapter) for the chosen satellite image in Product list. Unavailable products marked in grey. Product (chosen image)	
	displaying options: show product's boundaries or images.	
Data coverage	Displaying options for all search results (show scene's boundaries	
 Do not display Scene's boundaries (by selected product) 	(fig 14, a) or images (fig. 14, b) or do not display both).	
 Scelle's boundaries (by selected product) Images (by selected product) 	Satellite image time is in UTC (Coordinated Universal Time) for the	
* UTC time	all images.	
	all images.	

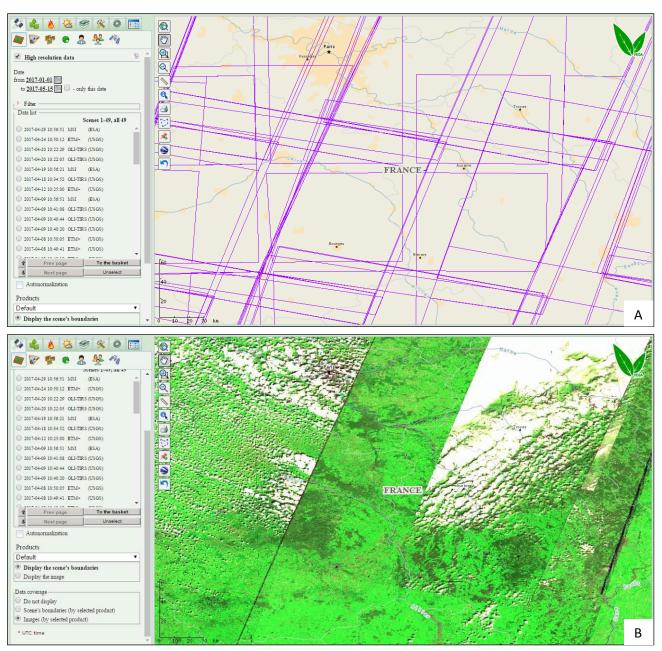


Figure 16: High resolution EO data tab. a) Scene's boundaries displaying; b) Selected images displaying.

High resolution EO data products list

Products are band combinations - thematic band synthesis, that allow you to see definite objects (fire or forest or snow or surface) more clearly at the image. For different satellites, you may choose different products.

Default

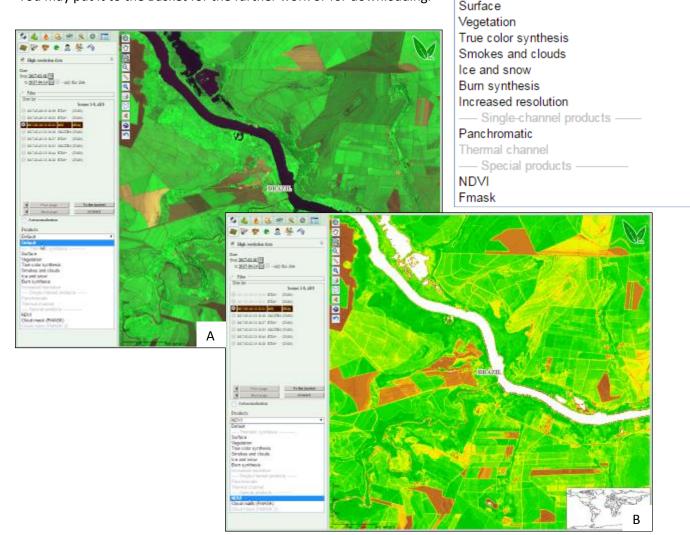
Thematic synthesis

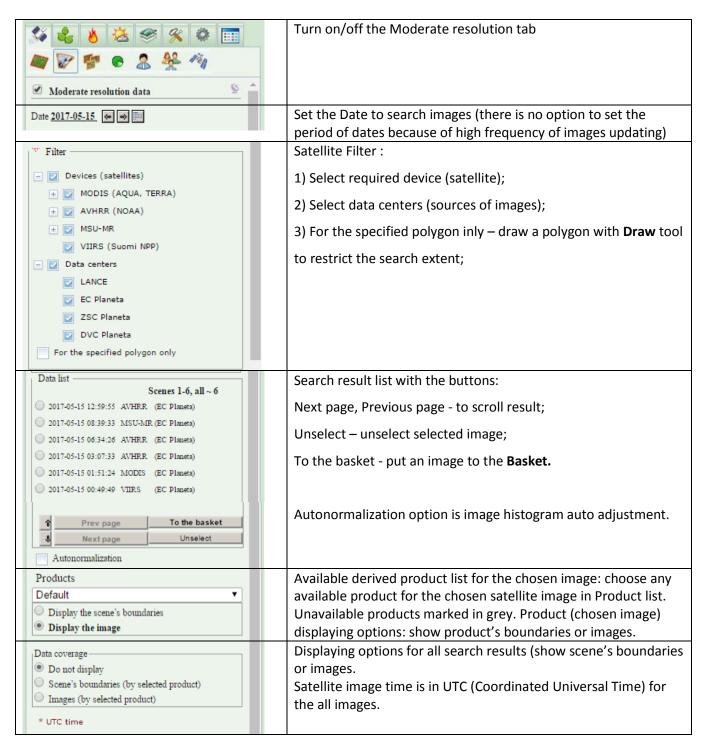
For example, there is increased resolution product for Landsat ETM + - : it is creating by merging the 15-m resolution panchromatic band with the 30-m resolution data. There is NDVI map product available for the Landsat and Sentinel imagery (and also for the moderate resolution images, see the <u>Moderate resolution</u> <u>Product list</u> chapter).

To get NDVI map for high resolution satellite images:

- \rightarrow Navigate to your AOI;
- \rightarrow Go to Satellite Data \rightarrow High resolution data tab;
- ightarrow Set the Date period ;
- → Set search parameters using **Filter** (date, device, satellite, cloudiness);
- \rightarrow Find and select an appropriate satellite image;
- → In **Products** from the drop-down list select **NDVI**;
- \rightarrow NDVI map for the selected image would be displayed.

You may put it to the Basket for the further work or for downloading.




Figure 17: High-resolution images fit perfectly with the image interpretation. Image - 2017-03-16 13:22:21 MSI (ESA); -22.50 Lat -48.60 Lon (Brazilian SIGMA-JECAM test-site). a) Default product - we can detect deep (clean) water in dark blue colors and polluted (shallow) water in brighter, purple, colors; b) NDVI map fits for the vegetation condition assessment – in brown are bare soils, deep green represents healthy vegetation, poor vegetation is in yellow.

Moderate resolution (MR) EO data

The moderate resolution EO data are acquired by the following satellite instruments:

- MODIS (AQUA, TERRA);
- AVHRR (NOAA);
- MSU-MR (Meteor-M1, M2);
- VIIRS (Suomi NPP).

Usage of the MR EO data tab is similar to the High resolution EO data tab.

VEGA.GEOGLAM.RU – global agricultural monitoring service. User Guide

Resolution of these images is not as good as high-res satellite's, but it's time resolution is much bigger: they come several times a day for a wide areas. This is the basis of continuous monitoring and cloud-free composite creation.

The MODIS images are usable for dangerous phenomena monitoring, such as tropical cyclones, volcanic eruptions, dust storms, large fires, floods. Example of moderate resolution imagery usage is presented below.



Figure 18: An example of a MODIS ((Moderate-resolution Imaging Spectroradiometer) image. The MODIS imagery has a wide range of applications for the study of the atmosphere, ocean and land.

Moderate resolution data usage example in the task of crop meteorological conditions assessment

The map at the figure 19 (Vegetation analysis \rightarrow Vegetation state analysis by district) shows bad winter crop vegetation dynamics in 2013 year at Volgograd, Saratov, Samara and other regions, colored in red. NDVI values are 30% below the NDVI multiannual mean. This information suggests some crop losses. Using MR imagery we may perform snow cover evaluation and assess the negative winter weather factors: December frost with the lack of snow cover caused the plant losses.

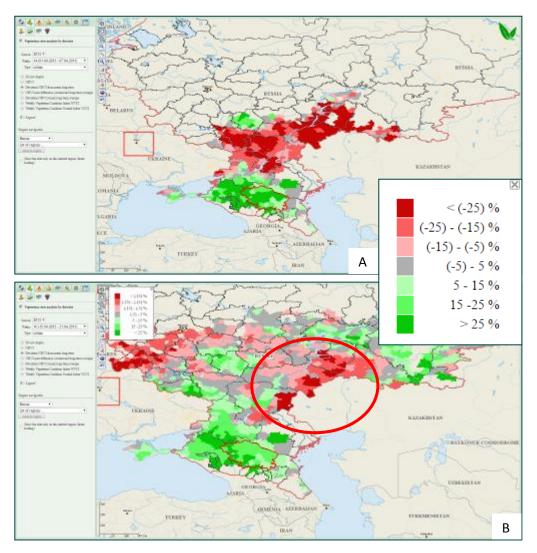
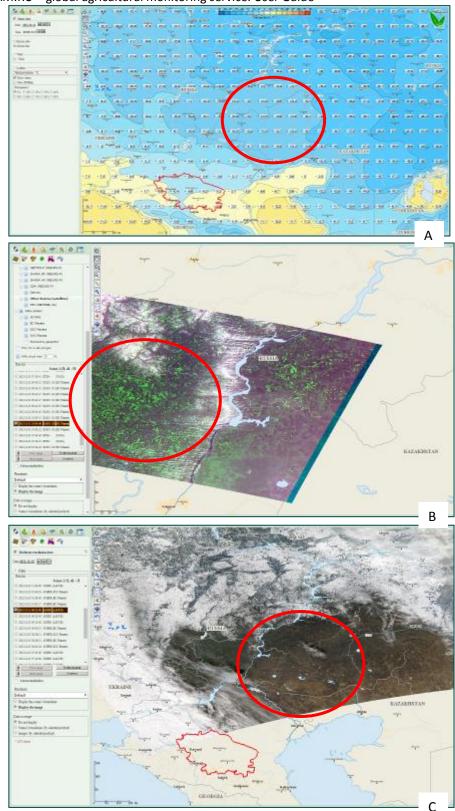



Figure 19: winter crop development NDVI cartograms (deviation from the multiannual norm) for the a) week 14th of 2013; b) week 16th of 2013.

At Figure 19:

Week 14 (01.04.2013-07.04.2013): winter crop NDVI deviation from long-term average map shows that there are problems in early crop development after the winter in a number of Russian regions (red ones at the map). Week 16 (15.04.2013-21.04.2013): two weeks later the situation became less critical but in some regions the negative trend remains.

VEGA.GEOGLAM.RU – global agricultural monitoring service. User Guide

Figure 20: 2012-2013 season winter crop development. Snowless zones with extremely low temperatures marked in red.

At Figure 20:

a) Winter 2012-2013 conditions evaluation using Meteorological data. Picture shows the minimum temperature distribution in the south of the European part of Russia in 14.12.2012. Temperatures in December 2012 were up to - 20°C, what is normal to crops if there is snow cover, but rather critical without it. b) Snow cover evaluation with 2012-12-11 KMSS-102 image. Picture shows snowless zones, winter crops fields are in green, covered with snow zones are in white; c) Snow cover evaluation with 2012-12-15 MODIS image. Picture shows the snowless zones.

Low temperatures and low snow cover caused winter crop damaging in a number of Russian regions.

Moderate resolution Product list

There are different products (band synthesis or processing results) are available for moderate resolution images. There are also channel data: a user can use it to make special band combinations or as is.

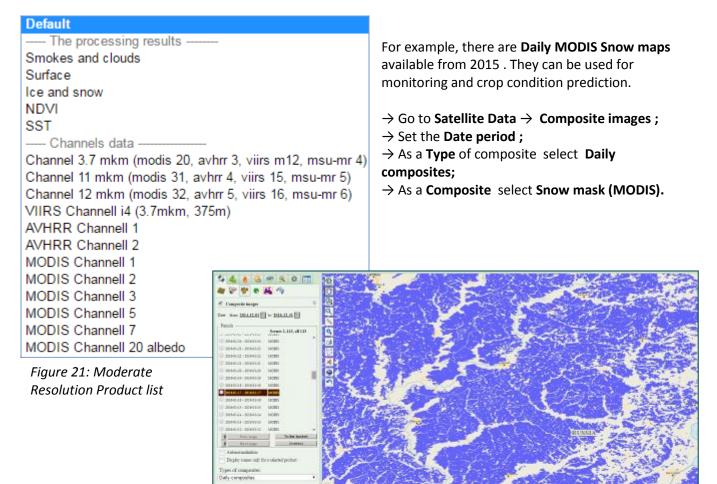
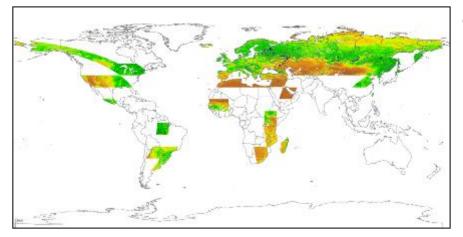


Figure 22: Daily MODIS Snow map

Comprodes Snow reach (MODIS)


Cloud-free image composites

 \rightarrow Go to Satellite Data \rightarrow Composite images

Image: Second control Image: Second control Image: Second control Image: Second control Image: Second control Image: Second control Image: Second control Image: Second control Image: Second control Image: Second control Image: Second control Image: Second control	Turn on/off the Composite images tab
Date from <u>2016-01-01</u> to <u>2017-04-20</u>	Date setting
Periods Scenes 1-150, all 234 2016-11-04 - 2016-11-04 VEGETATION 2016-10-20 - 2016-10-20 VEGETATION Prev page To the basket Next page Unselect Autonormalization Display scenes only for a selected product	Search results (available cloud-free composite images)
Types of composites: Daily composites	Type of composite setting
Composites: ? NDVI (PROBA-V)	Select the composite

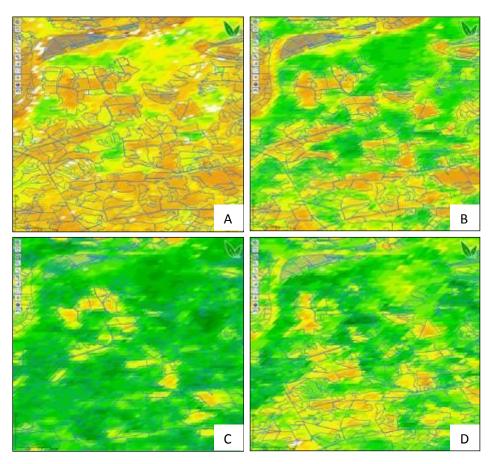
Cloud-free image composite is a combination of several images, where clouds and shadows are replaced with data from other dates. Combined images are radiometrically corrected and in a composite image can be analyzed as a single image for classification.

There are various Composite image products are available: Band synthesis, like Vegetation and Thermal anomalies for Landsat; Single bands, like NIR and RED channels for MODIS; Vegetation indices, like NDVI and LAI for MODIS and PROBA-V.

Composite images are aggregated by compositing period:

- Annual
- Seasonal
- Monthly
- Weekly
- 4-day
- Daily

Figure 23: MODIS NDVI weekly data composite for October 19, 2014


VEGA.GEOGLAM.RU – global agricultural monitoring service. User Guide

To work with composite images:

- \rightarrow Go to Satellite Data \rightarrow Composite images;
- \rightarrow Set the **Date** period;
- → Select **Type** of composite (for NDVI there are Weekly, 4-days, Dialy cloud-free composites);

→ Select the **Composite** (satellite). Click on the question mark to see the description of an each product;

- Available images would be displayed at **Periods.**
- \rightarrow Select the composite image from **Periods.**

Figure 24: Biomass accumulation dynamic maps (weekly MODIS derived cloud-free composites) for the fields in Moscow region at the summer season 2016:

a) April; b) June; c) July; d) September.

Radar data

For Radar data there are images from: Sentimel-1 (C-SAR), Envisat (ASAR), ERS (SAR) satellites. Radar images serve to develop new agricultural monitoring methods, they are widely used in Digital Elevation Model creating, in oil spills monitoring and water craft detection, in forest and agriculture land condition assessment.

Images Images <th>Turn on/off the Radar data tab</th>	Turn on/off the Radar data tab
Date from <u>2017-04-17</u> to <u>2017-04-20</u> - only this date	Date setting
 Filter by devices (satellites) Devices (satellites) C_SAR_EW (Sentinel-1) Sentinel-1A Sentinel-1B C_SAR_IW (Sentinel-1) Sentinel-1A Sentinel-1B ASAR 12.5m (Envisat) ASAR 75m (Envisat) SAR (ERS) 	Satellite Filter
Data list Scenes 1-150, all 152 2017-04-20 04:52:47 C_SAR_IW (VH,VV) 2017-04-20 04:52:22 C_SAR_IW (VH,VV) Prev page To the basket Next page Unselect Autonormalization Display scenes for a selected product only	Search result list with the buttons: Next page, Previous page - to scroll result; Unselect – unselect selected image; To the basket - put an image to the Basket .
Products Default Display the scene's boundaries Display the image	Available derived product list for the chosen image: choose any available product and set the product (chosen image) displaying options
Data coverage Do not display Scene's boundaries (by selected product) Images (by selected product) * UTC time	Displaying options for all search results. Satellite image time is in UTC (Coordinated Universal Time) for the all images

Figure 25: Here, on Sentinel-1 image, **19.10.2016 21:44 C_SAR_IW (VH, VV)**, we may clearly see the artificial objects (in white). They are detectable well due to multiple scattering; the buildings are kind of glowing. These new-built houses are constructed on the place of the former meadows.

Advantages of Synthetic Aperture Radar (SAR) compared to optical remote sensing (Source *saredu.dlr.de*):

- All-weather capability;
- Frequent measurements during the short dynamic growing season of crops is possible;
- Independence of sun illumination day and night operation;
- Sensitivity to dielectric (water content, biomass) and geometrical (plant/canopy structure, surface, roughness) properties of the target complementary information to optical data.

Disadvantages of SAR data:

- Complex interactions (difficult in understanding, complex processing);
- Speckle effects;
- Topographic effects, radar shadow;

ISS data

Images from the International Space Station especially for the GEOGLAM project were taken (in 2015) and are available to view for VEGA-GEOGLAM user's observation of the JECAM sites at ISS data tab.

 \rightarrow Go to Satellite Data \rightarrow ISS data

- \rightarrow Set the **Date** period, select phenomenon (fig 6, 1);
- \rightarrow Turn on View ISS data to see where there are images on the map (fig 6, 2);
- \rightarrow Zoom to the area of interest (fig 6, 3);
- \rightarrow Using **Query** click at the red point (fig 6, 4).

Pop-up window with attributive information for the point opens (b). Click on Images from ISS link to open the ISS image (c).

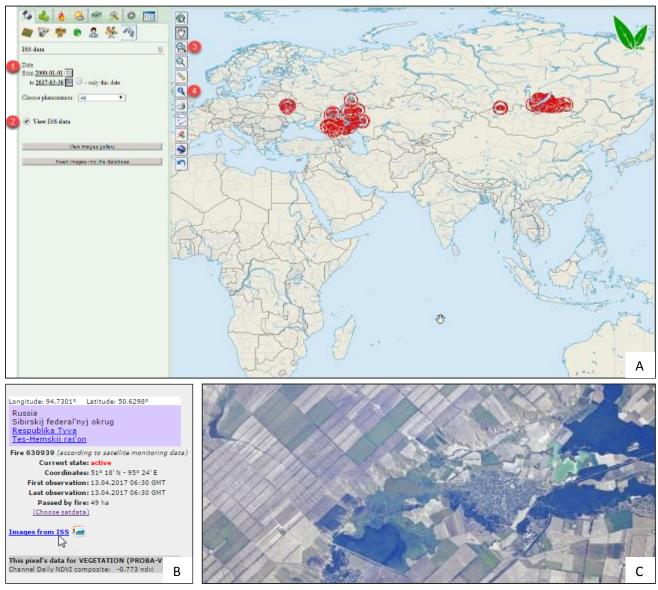


Figure 26: ISS data.

VEGA.GEOGLAM.RU – global agricultural monitoring service. User Guide

My products

Users can upload raster georeferenced (GeoTiff) files to the system.

\rightarrow Go to Satellite Data \rightarrow My products

Date from 2017-04-20 Set the date period to find the uploaded images to 2017-04-20 - only this date List of uploaded images (product instances) No data found Scenes: 0 List of uploaded images (product instances) Image: Comparison of the basket Update list To the basket Image: Comparison of the the text of uploaded images (product instances) Choose the product class from the Product list (or choose "All products") Image: Display the image Set the product displaying options	Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: User's products Image: Second system Image: Use	Turn on/off the My Products tab
No data found Scenes: 0 1 Update list To the basket 2 Zoom to Unselect Autonormalization Choose the product class from the Product list (or choose No products Display the scene's boundaries Display the image Image Image 	from <u>2017-04-20</u>	Set the date period to find the uploaded images
No products Image O Display the scene's boundaries Image	No data found Update list To the basket Scenes: 0 To the basket Unselect	List of uploaded images (product instances)
Image: Data coverage Set the product displaying options	No products Display the scene's boundaries	
	I ^k Data coverage	Set the product displaying options
Add new product (file) – opens File Uploading form. My products management Add new product (file) – opens File Uploading form. To change description of uploaded product or to delete the product, use My products management option.	- · ·	To change description of uploaded product or to delete the

A user can upload raster file in GeoTIFF format to VEGA-GEOGLAM using special form.

To load your GeoTIFF file to the system:

 \rightarrow Go to Satellite Data \rightarrow My products;

 \rightarrow Click on **Add a new product link.** Upload form opens;

 \rightarrow Fill the form, describe and upload your file;

 \rightarrow Click Send a request to add the product to the archive.

Uploaded product became available in VEGA-GEOGLAM in few seconds.

User product upload form Project: Vega Service User: Elkina Evgeniya				
Product type definition:				
Product type setting method:	Choose existing product type Describe new product type			
Product type name*:				
Group setting method:	Choose from existing groups Define new group			
Group name:	default group			
Legend image file (.gif,.png,.jpg):	Upload file			
Product definition:				
Date [*] (YYYY-MM-DD):				
Time [*] (HH:MM:SS):	00:00:00			
Satellite:	not defined			
Device:	not defined			
GeoTIFF image (.tif):*	Upload file			
Calculate GeoTIFF scales:				
Outline setting method:	Do not upload information about image outline Upload file describing the outline of the image Upload a set of Shape Files Define WKT polygon			
Send a request to add the product to the archive				

Figure 27: file upload form.

Field data

Field (in-situ) data is stored in the Field Passport of VEGA-GEOGLAM. This information can be used for the joint analysis of ground and satellite data, for the field usage history assessment, for the cropland mapping and yield estimations.

A user enters the following information for an each field:

- Field borders
- Type of land
- Crop type
- Yield
- Phenological stages

Learn more about Field Passport editing options in the chapter Field Passport.

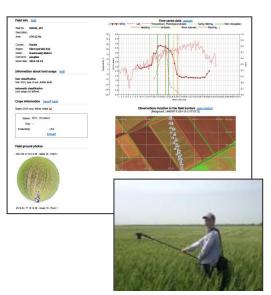
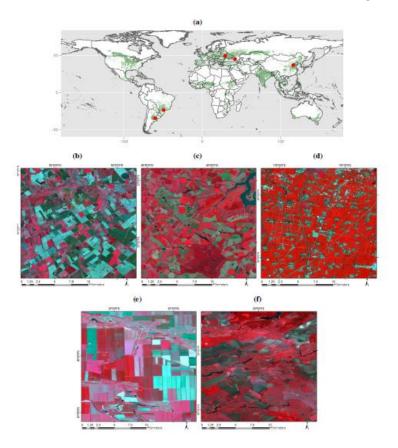



Figure 28: In-situ data collection

SIGMA/JECAM test sites data

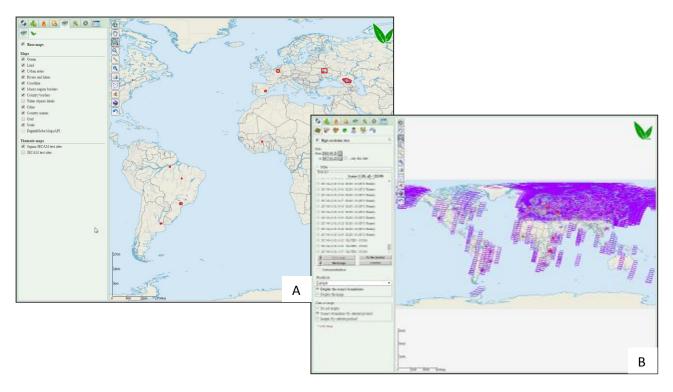
One of the VEGA-GEOGLAM priorities is to facilitate combined EO and in-situ data analysis over the JECAM test sites (http://www.jecam.org/). SIGMA-JECAM activities, in which VEGA-GEOGLAM appears as a EO data analysis planform, are presented by various cropland mapping experiments over a variety of global cropping systems, methodologies developing and trainings.

One of the major challenges is sharing time series datasets from earth observing satellites and in-situ data. There are five JECAM test sites located in Russia, Ukraine, Argentina, China and Brazil with satellite and in-situ

data provided by VEGA-GEOGLAM (Table 5). Also there are some test sites at the VEGA-GEOGLAM interface without the in-situ data, but the satellite data is continuously collected over them too. One of the VEGA-GEOGLAM priorities is to facilitate combined Earth Observation and in-situ data analysis over the JECAM test sites.

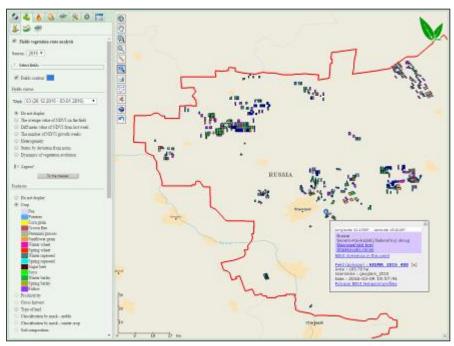
VEGA-GEOGLAM is open to the new data inputs. New data input is possible manually – through the Passport of the Field tool or automatically via Administrators or API.

Table 5. Available in-situ data over the JECAM test sites


Figure 29. Location of the JECAM sites.Representative zooms of Landsat-8 false color composites in (b) Argentina, (c) Brazil, (d) China, (e) Russia and (f) Ukraine.

VEGA.GEOGLAM.RU – global agricultural monitoring service. User Guide

Site	Amount of the fields	Crop data	Year
Argentina	348	Field borders, Arable/non-arable	2014
Brazil	847	Field borders, Arable/non-arable, Crop types	2014
China	189	Field borders, Crop types	2014
Russia	588	Field borders, Arable/non-arable, Crop types	2014, 2015
Ukraine	608	Field borders	2014


Test sites description

JECAM test sites present contrasted growing conditions and characteristics, management practices and crop calendars. Two of the study sites are located in South America (Brazil and Argentina), while the remaining three are located in Asia and Europe (China, Russia and Ukraine). To turn test sites border turn or off use the Base maps tab.

Figure 30: a) SIGMA-JECAM test sites borders in the VEGA-GEOGLAM map interface b) The boundaries of the scenes, collected over the year (April 2016 – April 2017).The overall amount is more than 202 498 scenes of high and moderate resolution imagery

The Russian JECAM site (60-km by 85-km) is located in the Stavropol region (45°09' N, 42°08' E) (Figure 31). More than 80% of total region area is covered by agricultural lands. To see the fields and in-situ data of Russian SIGMA-JECAM test site:

→ Navigate to **Russian SIGMA**-JECAM test site (Lat 45 Lon 43.2 -Stavropol region);

 \rightarrow Go to Fields vegetation state analysis;

 \rightarrow Select **Season: 2015**;

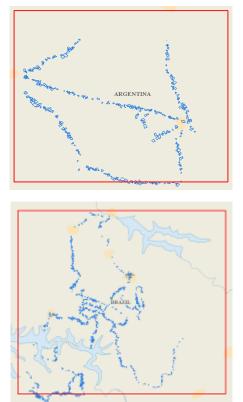
 \rightarrow Open Select fields and select All;

 \rightarrow Turn on **Fields contour** You will see borders of the field (in blue);

→ Zoom to any group of fields; → In **Features** select **Crop.** You'll see crops of 2015 year in different colors.

Figure 31: Russian SIGMA-JECAM test-site

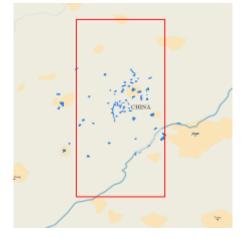
The dominating crops in Stavropol region are winter wheat, spring and winter barley, peas, soybean, sunflower, winter rape and perennial grasses with strong winter crop prevalence. The typical field sizes range from 30 to 130 ha. There are four main crop rotation types with several sub-types; changing from 2-years cycle with winter wheat and clean fallow in the arid Eastern parts to 8-years cycle including clean fallow, winter wheat, sugar beet, fodder maize, sunflower, spring barley and grain maize in the central and Western parts. In-situ data is a crucially important in cropland mapping.

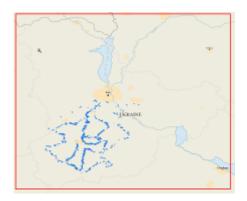

Figure 32: Crop map for the Stavropol region, 2014.

The map presented in Fig. 32 was created in VEGA-GEOGLAM with the supervised classification tool and the JECAM in-situ data as the training samples.

To view the Crop map for the whole Stavropol region:

→ Navigate to Russian SIGMA-JECAM test site (Lat 45 Lon 43.2); → Go to Fields vegetation state analysis;


→ Go to Agricultural maps;
 → In Local select Crop types for
 2014 year.


The Argentinean site (100-km by 90-km) is located in the Rolling Pampas, a sub-region of the Pampas with gentle slopes and rivers. Soils are mostly mollisols with a deep surface layer of high organic matter content. The climate is humid temperate with a homogenous precipitation regime and an annual mean of about 1000 mm. The main grain crops are soybean, maize and wheat. Agriculture is developed under no-till systems and mostly without irrigation. Typical field size is 20-ha but there is a high variability in plot size. Part of the land is also dedicated to forage including pastures and grasslands.

In Brazil, the site (80-km by 95-km) is located in the state of São Paulo close to the city of Itatinga. The climate is humid tropical with a mean temperature of 19°C and precipitations of 1390 mm measured in the past 20 years at the nearby Itatinga Experimental Station of the University of São Paulo. Temperatures and precipitations are lower from June to September, with temperature below 5°C several days each year. The land cover is dominated by cropland, pastures, planted and natural forests and water bodies. Annual crops are dominated by soybean and maize, with two cultivation cycles per year in monoculture or successions. Some of the fields are irrigated with pivot. Sugarcane, which is perennial but has an annual harvesting cycle, is also largely planted in this area. Permanent pastures and grasslands are present in the East of the area, and show an annual production cycle directly linked with the climate. Forest plantations,

mainly eucalypts and pines, also share a large part of the area, and are harvested by clear-cuts.

The Chinese site (75-km by 60-km) is located near the city of Yucheng in the Northwest province of Shandong (Figure 1d). According to the long-term observation data from the Yucheng Integrated Agricultural Experimental Station, the area has a temperate, semi-arid monsoon climate, with mean annual temperature of 13.1°C and precipitations of 582-mm concentrated from late June to September. The land cover is dominated by cropland, forest and urban areas, with smaller areas of water and grassland. The dominant crop rotation starts typically with winter wheat followed by summer maize. Summer maize is sown in mid-June and harvested at the end of September to early October. The annual cycle is then repeated (Meng et al., 2013). Winter wheat is sown in early October and harvested in early or mid-June the following year. Typical field size is 0.2 and 0.8-ha at the site. Overall, the JECAM in Shandong province is representative of the North China Plain farming practices.

The test site in Ukraine (150-km by 110-km) is located in the region of the Kyiv oblast (latitude +50.0° and longitude +30.2°) (Shelestov2013, Kussul2014) (Figure 1f). The climate in the region is humid continental with approximately 709 mm of annual precipitations Land cover classes are quite heterogeneous including croplands, forests, grassland, rivers, lakes and wetlands. Forests and grasslands dominate its Northern part, while the central and Southern parts are agriculture intensive areas. The crop calendar is September-July for winter crops, and April-October for spring and summer crops. Dominant crop types include maize (25.1% of total cropland area in 2013), winter wheat (16.1%), soybeans (12.6%), vegetables (10.3%), sunflower (9.3%), spring barley (6.8%), winter

rapeseed (4.0%), and sugar beet (1.3%). Fields in the region are quite large (except family gardens) with a size ranging up to 250 ha.

Field monitoring tools

Field is a monitoring unit in VEGA-GEOGLAM.

For every field (the defined borders of the object) the system automatically gathers and calculates EO data, meteorological data, NDVI and its deviation from the multiannual norm and other.

Field (user defined objects) creation

There are two options to create your objects (define borders of the fields to analyze) to monitor in VEGA-GEOGLAM:

- 1) Manually through the Drawing and Passport of the Field tools;
- 2) Automatically via Administrators. Use this option when you need to export a lot field borders from existing .shp file. Write to <u>vega@smis.iki.rssi.ru</u>, attach and describe your dataset, VEGA-GEOGLAM administrator will help you to load it to the VEGA-GEOGLAM interface.

To create a field manually:

\rightarrow Navigate to your AOI;

→ Select an image from **Satellite data** (or use DigitalGlobe Maps as a base map) and zoom in to the object you want to draw;

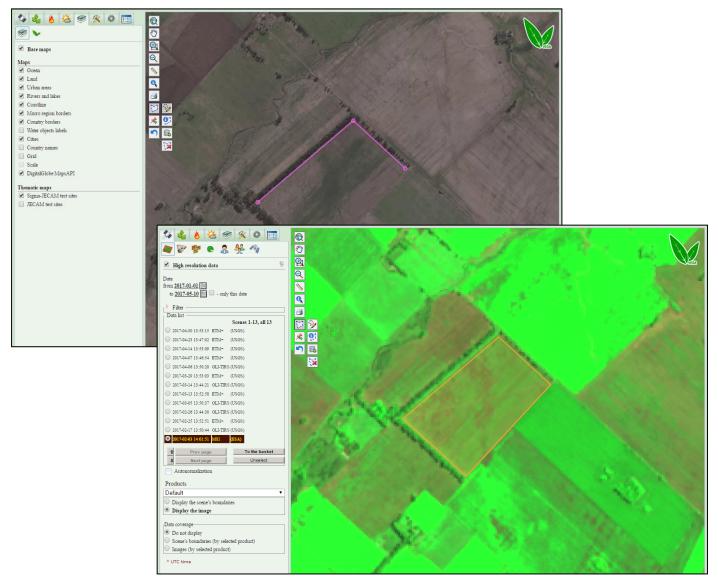


Figure 33: Field borders drawing

ightarrow Select Polygon \sum in the Toolbar, then Polygon Draw \ge ;

 \rightarrow Using mouse draw the field create a closed polygon. To finish polygon drawing you should locked first and the last vertexes with one click. If you need to delete object, use **Delete Solution**.

 \rightarrow Select Add polygon to DB and save the field in the database: specify Field ID, Field description, usage type. The system confirms creation of a new field;

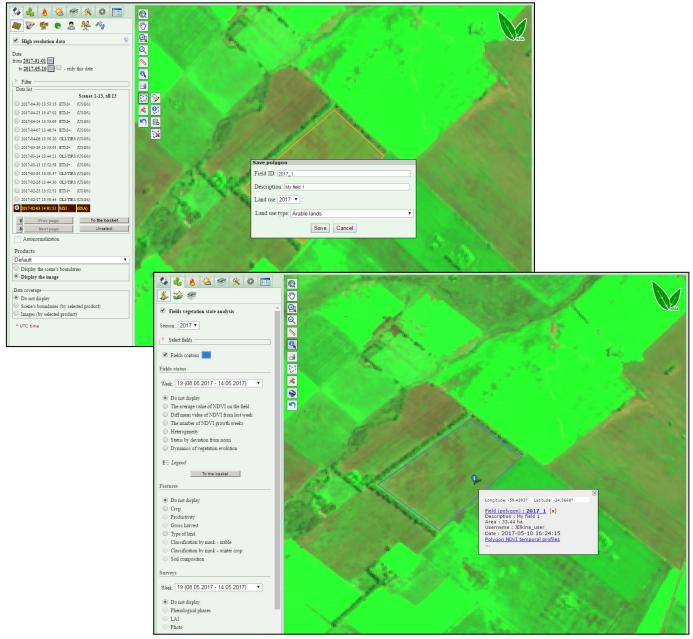


Figure 34: Field borders saving in the Database

 \rightarrow To see the created field go to Agriculture data \rightarrow Fields vegetation state analysis \rightarrow in Fields block Turn on the Field Contours;

 \rightarrow Use **Query** to open the **Field Passport**: t the pop-up window click on the Field name link. Field passport opens in a new browser window allowing you to input the additional information about the field. Add crop type information to color fields on the map according to the crop type.

Field passport

Additional information about the fields is stored in the Field Passport.

A user can enter following information for the field (field borders):

- General description;
- Type of land;
- Crop type;
- Yield;
- Phenological stages.

Figure below illustrates the Field Passport elements:

1. General Field description: ID, name, area, country, region, district, date added and username;

- 2. Edit/save additional information;
- 3. Set Land type;
- 4. Set crop information;

5. NDVI (and the other parameters, if available) for the field for the current year. Click **analysis** to go to Graph Interface;

6. Field borders and coordinates

Figure 35: The Field Passport interface.

How to open and to fill the Field Passport:

- \rightarrow Navigate to your AOI;
- \rightarrow Go to Agricultural data \rightarrow Fields vegetation state analysis;
- \rightarrow Set Season. Turn on Fields contours;
- \rightarrow Zoom in to field you want to edit;
- \rightarrow In the Toolbar select **Query** and click on the field. You'll see an Information pop-up window;

→ Click on the field name (in a row Field (polygon): field name). It will open Field Passport in new browser window;

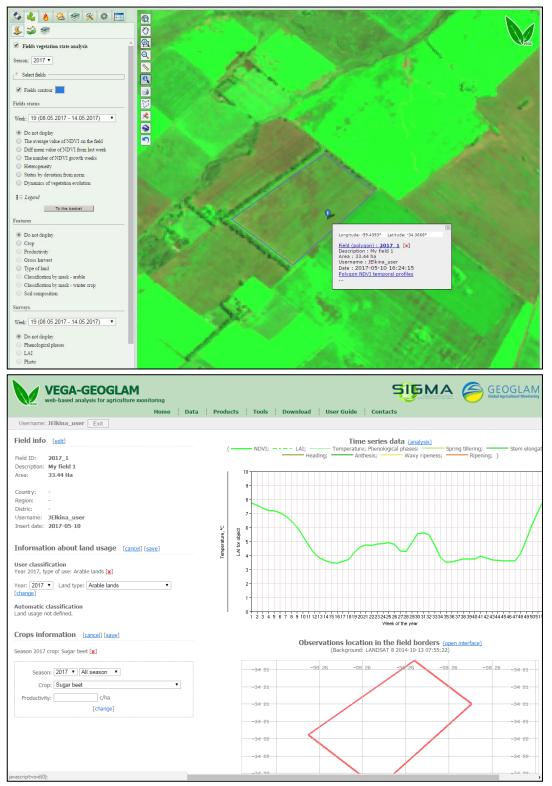


Figure 36: The Field Passport interface opens with Query tool

 \rightarrow Explore and edit the Passport. Editable fields are marked with the **[edit]** links. After editing information click **save** to save your edits.

At **Fields vegetation state analysis** turn on the visualization for the additional information (fig.37) – for example, crop types information. There is a color legend for the most popular crops.

Figure 37: a) Information about the crop type of the field (Sugar beet, season 2017) was added to the Field Passport and then visualized at the map; b)Group of fields with the crop type data; c)Group of fields with the land usage data.

Agricultural data group of tab

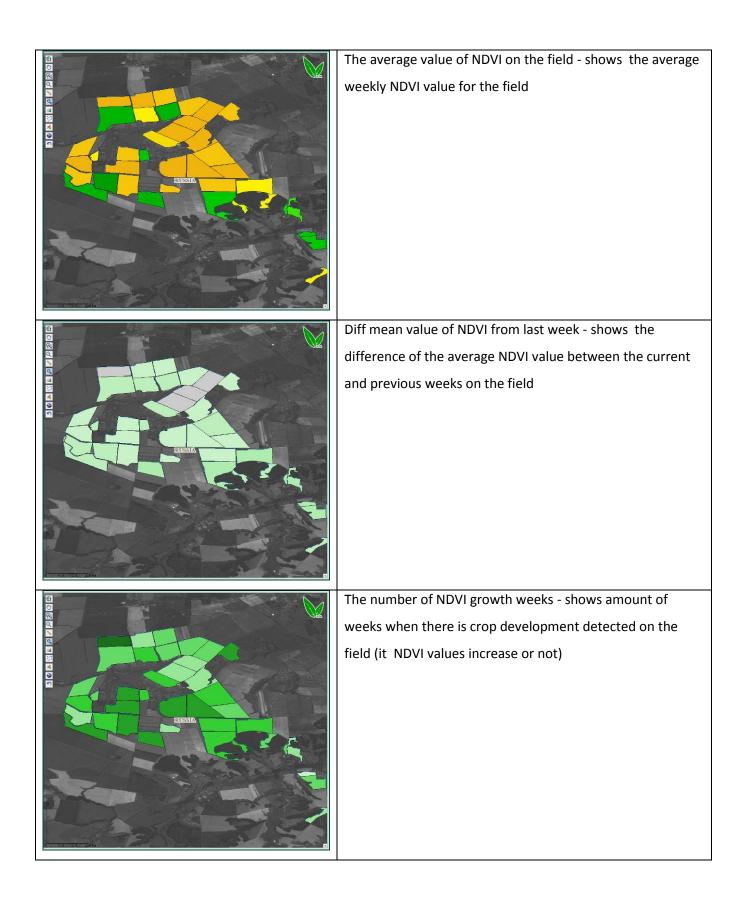
There is a special group of tabs to work with fields – **Agricultural data.** The tabs are:

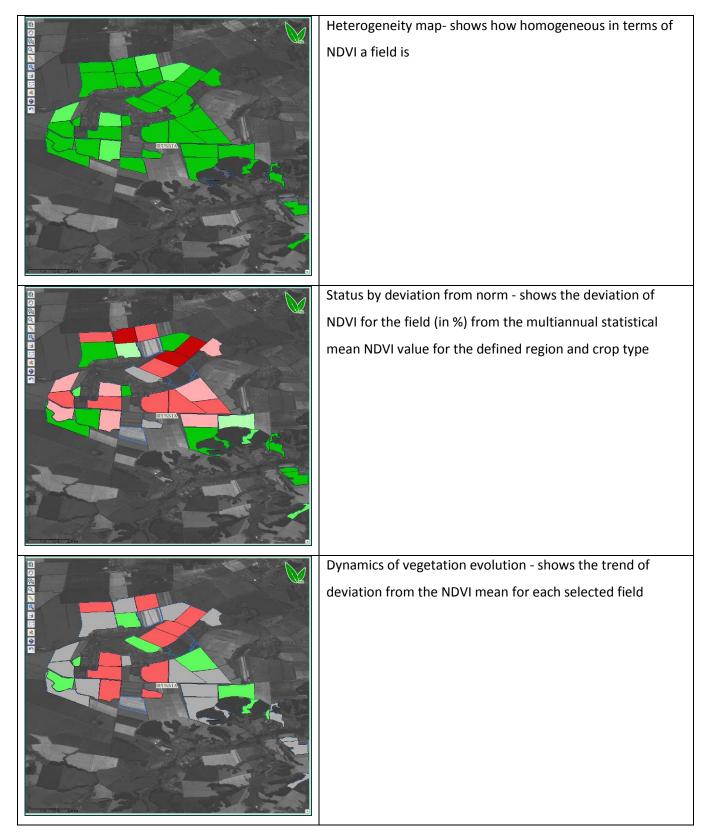
- Field vegetation state analysis field management;
- Vegetation state analysis by district crop status assessment at regional level;
- Agricultural maps useful thematic maps.

Field vegetation state analysis

Tab allows to visualize field boundaries and crop types maps based on objects' related attributes.

Season: 2017 • ** Select fields Crop type: no matter * Land type:	Turn on/off the Field vegetation state analysis tab Select Season (the year) Select Crop type and Land type of the fields
Fields contour	Turn on Field contour (borders) displaying Blue color set as default
Fields status	Cartograms.
 Week: 14 (03.04.2017 - 09.04.2017) ▼ Do not display The average value of NDVI on the field Diff mean value of NDVI from last week The number of NDVI growth weeks Heterogeneity Status by deviation from norm Dynamics of vegetation evolution # Legend 	Choose the week and choose any of Field status maps to see the thematic maps based on NDVI. Read more about cartograms at the <u>Cartograms</u> chapter.
Features Do not display Crop Productivity Gross harvest Type of land Classification by mask - arable Classification by mask - winter crop Soil composition 	Features Choose any parameter (attributive information) that was added to the Field Passport) for the field to be displayed on the map: Crop type, Productivity, Type of land and other.
Surveys Week: 15 (10.04.2017 - 16.04.2017) Do not display Phenological phases LAI Photo	Surveys Choose the week and select type of in-situ survey. It will show on the map if there were any in-situ surveys (such as LAI measurements) at the fields.


Events O not display Fertilizing in the past year Fertilizing in the current year	Events Choose the type of event: current year or past year fertilizing. It will show on the map if there were fertilizing events.
Interannual surveys statistics by region ● Do not display ○ Crops type information #Ξ ○ Crops productivity information #Ξ	Interannual survey statistic by region Choose the type of information: Crop type or Crop productivity information. It shows how much attributive information there is in Vega for the fields for the each region.


Field status cartograms

Cartograms are thematic maps based on weekly NDVI values for the fields that show the crop conditions over a given period. Cartograms show field status, which is useful for the crop development anomalies detection, for finding the most vulnerable spots and the yield assessment.

To turn on cartograms:

- \rightarrow Navigate to your AOI;
- \rightarrow Go to Agricultural data \rightarrow Fields vegetation state analysis;
- \rightarrow Set Season;
- \rightarrow Turn on **Fields contours**;
- \rightarrow Turn on any of the Field status maps (cartograms).

Vegetation status analysis by administrative districts

VEGA-GEOGLAM provides automatically calculated weekly NDVI values for arable lands in any region of Russia.

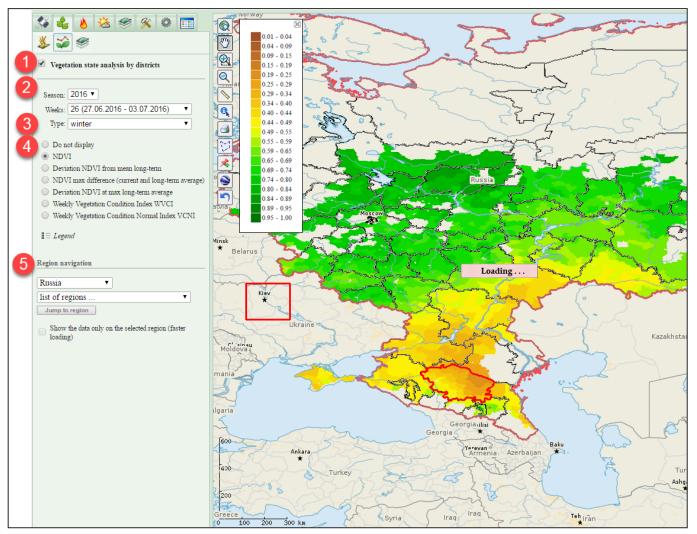


Figure 38: NDVI map for the Russian regions.

To get NDVI values and NDVI deviation maps for Russian regions:

1. Go to Vegetation analysis \rightarrow Vegetation state analysis by district;

- 2. Select Season and week;
- 3. Select Type of crops (arable, winter, summer crop, forest, forest leaf, forest pine);
- 4. Select a map:
 - NDVI;
 - NDVI deviation from the multiannual norm;
 - NDVI max difference;
 - Deviation NDVI from max long-term average;
 - WVCI index;
 - VCNI index.
- 5. Navigate to the specific region.

Agricultural maps

🗳 🍓 👌 送 🥩 🛠 🏟 📰	Turn on/off the Agricultural maps tab
🎉 🍲 🥯	
Global	Global maps: IIASA cropland map (2015)
□ Cropland IIASA H≣	
Regional	Regional maps:
Arable lands	 arable lands maps (for every 5 years from 2000);
2011-2016 year	• winter crops maps (for every season from 2002);
2010-2015 year	
2009-2014 year	 clean fallow maps (for every year from 2002);
2008-2013 year	
2007-2012 year	
 2006-2011 year 2005-2010 year 	Mark RUSSIA
2004-2009 year	BELARUS
2003-2008 year	
 2002-2007 year 	and the second
2001-2006 year	
2000-2005 year	and the second
Winter crops	UKRAINE
Season 2016-2017 spring (7 april)	
Season 2016-2017 autumn (5 december)	MOLDOVA
 Season 2016-2017 autumn (3 november) Season 2016-2017 autumn (11 oktober) 	
Season 2015-2017 autumn (11 oktober)	IANTA
Season 2015-2016 spring (4 june)	
Season 2015-2016 spring (11 may)	2 Stars
Season 2015-2016 spring (5 april)	ARIA
Season 2015-2016 autumn	GEORGIA
Season 2014-2015 spring	AJARIA
Season 2014-2015 autumn	
Season 2013-2014 spring	Astara TURKEY
Season 2013-2014 autumn	Figure 39: Arable lands map for 2011-2016 years
Season 2012-2013 spring Season 2012-2013 autumn	
Season 2011-2012 spring	
Season 2011-2012 autumn	
Season 2010-2011 autumn	
📃 Season 2009-2010 autumn	
Season 2008-2009 autumn	Fridra
Season 2007-2008 autumn	
Season 2006-2007 autumn Season 2005-2006 autumn	
Season 2005-2006 autumn Season 2004-2005 autumn	
Season 2003-2004 autumn	
Season 2002-2003 autumn	Valgograd
Clean fallow	
2016 year	
2015 year	
2014 year	
2013 year	
 2012 year 2011 year 	
2011 year 2010 year	
2009 year	Figure 40: Winter crops in the Southern Russian regions,
2008 year	
2007 year	season 2016-2017
2006 year	
2005 year	
2004 year	
2003 year	
2002 year	
ocal	Local maps: maps for Stavropol region (Russian SIGMA-JECAM test
Winter grans 2014 2015	site)
Winter crops 2014-2015 season Arable lands for 2014 year	
Soil map for Stavropol region H	
Crop types for 2014 year ∰⊟ Soil map for Stavropol region ∰⊟	

Time series tools. NDVI time series

There is a **Graph Interface** in VEGA-GEOGLAM to work with vegetation indices and meteorological data time series. NDVI archive is one of the most valuable components of VEGA-GEOGLAM. NDVI - the normalized difference vegetation index - commonly used vegetation indice. NDVI is describing vegetation (relative biomass) by showing the difference between near-infrared (which is strongly reflected by vegetation) and red light (which is absorbed by vegetation).

NDVI = (NIR - red) \ (NIR + red)

Where NIR is near-infrared reflectance, red is red reflectance. NDVI values range from -1 to 1.

This index can show us plant "greenness" and the higher the value of the NDVI index is— the more relative biomass there is, and we consider that a plant is healthier.

You can use NDVI maps, NDVI time series, Crops status maps or create your NDVI map using imagery with NIR and red bands in VEGA-GEOGLAM. VEGA automatically calculates NDVI values for the user defined objects - the fields. In addition, VEGA aggregates NDVI values on a regional level (fig.41).

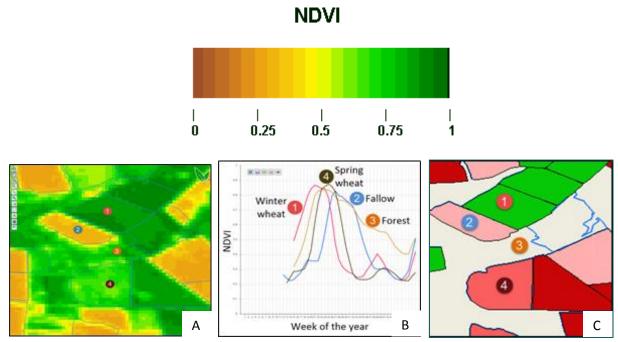


Figure 41:

a) NDVI Landsat derived map (satellite image product); b) NDVI time-series for the selected objects; c) Crop status map for the group of fields based on NDVI values and comparison with a mean.

There are several options to get NDVI map for the chosen area in VEGA-GEOGLAM:

- NDVI map at a given date (satellite image product);
- Weekly average NDVI map (MODIS derived cloud-free composite);
- Indices calculation (calculate NDVI for any satellite image manually).
- To see NDVI graph for the field(s), use Graph interface.

Time series analysis allows us to solve a broad variety of agricultural monitoring tasks:

- To assess the field usage history analysis for any period of time from 2000 year;
- Crop development trend analysis;
- Current to standard NDVI comparison and detection of anomalies in crop development (standard is supposed as any user defined norm or the multiyear statistical mean NDVI value);
- Crop development condition comparison with other fields and with other years;
- Field vegetation development trend comparison;
- Field usage control through the season;
- Land usage assessment for the targeted purpose;
- Agricultural work control and assessment.

NDVI graph for the field

To open Graph Interface with NDVI and meteorological data time series:

 \rightarrow Navigate to your AOI;

- \rightarrow Go to Fields vegetation state analysis;
- \rightarrow Select Season, Select fields, turn on Fields contour;
- \rightarrow Zoom in to your field;

 \rightarrow Select Query \bigcirc and click on the field.

You'll see an Information pop-up window with the field description.

 \rightarrow Click on the field name (in a row Field (polygon): field name). It will open Field Passport in new browser window. Then in Field Passport click Time series data (analysis).

or

→ Click on **Polygon NDVI temporal profiles**. It will open Graph Interface in new window.

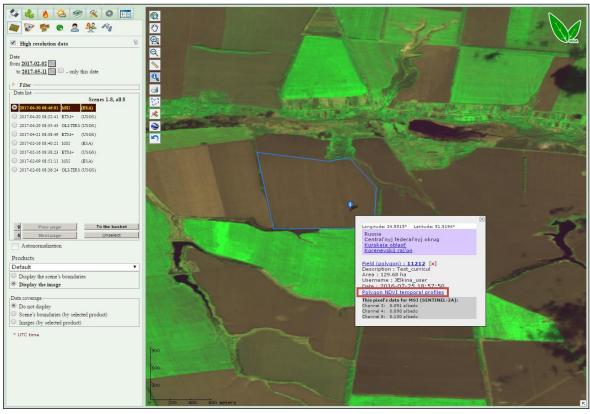


Figure 42: Field information window.

At **Graph interface** a user can open time series for the objects for the defined years and defined parameters:

- 1- Group of tabs (Object, Region, Norm, Parameters, Legend)
- 2- Selected object (field)
- 3- Displayed parameter (NDVI, PSPI, meteorological parameters)
- 4-Year(s)
- 5- Toolbar (Zoom out, Save as .png, Save as .csv, Show point values buttons)
- 6- Graph
- 7- Selected parameter axis (values)
- 8- Week of the year axis

Figure 43: Each point at a graph represents a weekly average value (NDVI).

Graph Interface tabs are:

Object- NDVI and meteorological time series for the object (field);

Region – Actual and automatically calculated multiannual values aggregated by region;

Norm – Set the norm to compare and assess current vegetation development on the field;

Parameters – use this tab to define displayed parameters for regions (in Region tab);

Legend – change style and color of the graphs.

To view values at the points of a graph:

\rightarrow Click on Show/hide points value ((fig.44, 1) ;

Turn on **Show/hide point's value** and explore the NDVI graphs. For NDVI graph each point is the mean weekly value of NDVI for the field.

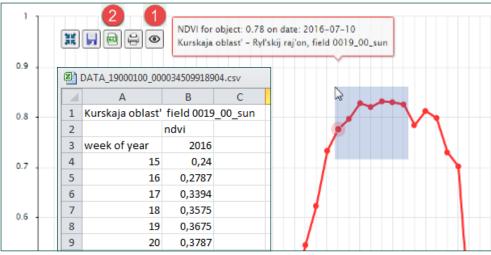


Figure 44: NDVI graph and NDVI values.

Draw a square on a part of the graph using pointer to zoom in. To return to full extent click **Show full-size III**.

To download the set of values:

 \rightarrow Click on **Export Data (CSV)** (fig.44, 2). You can open and work with this file in Microsoft Excel or other editor.

To change the graph style:

 \rightarrow Open the Legend tab;

ightarrow in the list of objects click on the object which style you want to change;

ightarrow Style settings window Opens;

 \rightarrow here you can choose **Color, Width** and **Style** of the line.

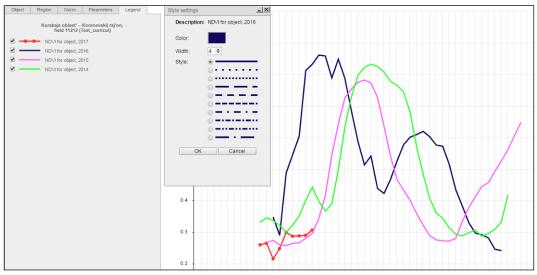


Figure 45: Changing the style of the NDVI grahp

Field comparison on NDVI

A user can see vegetation growth dynamics at the fields and compare the NDVI graphs with the:

- 1) Multiannual NDVI mean for the specified crop type and region (norm);
- 2) The other year (NDVI for the same object but for the other year);
- 3) The other field(s).

1. Comparison with the norm

It is possible to calculate current NDVI value for the winter and spring crops separately within the borders of defined polygons (fields) and to compare it with the average trend. As a trend, or norm, multiannual NDVI value, calculated from 2001 to current year, is assumed. As a mask for arable and non-arable lands IKI created maps are used. Comparison with the norm is a basis of anomaly detection in the crop development.

To compare vegetation development on a field with multiannual average trend for defined area and crop:

→ Open **Graph Interface** for the selected field;

→ At Graph Interface go to Region tab;

 \rightarrow Select the region, then **NDVI average (winter crops)** as a parameter to display and **Multiyear parameter** to see the average value calculated from historical archive.

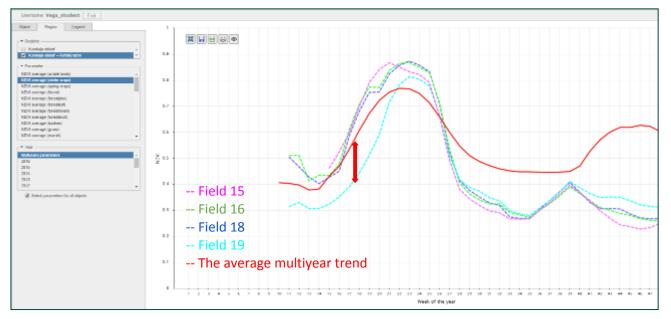


Figure 46: The graph shows that 15, 16, 18 fields are started to grow in line with the trend, while 19 field has a deviation.

			1			
	1	Specified r	kaum			
		Season20	ate.			
for ten G						
Diffett um	ar analog 201	5.4				
	urnus NDV a					
winter or	· · · · · · · · · · · · · · · · · · ·					
Custom	mante					
Choose	a nonn		-			
Shov	K Hide	1				
Set no						
Setno	m .]					
Setno			is al de	deliga Pr	20.30(0)	
Set no	e established is	orm and easily				
Set no Set no Status	e established n legend of dev	orm and easily				0
Set no.	e established n legend of dev	orm and easily				0
Set no Status Status good status	e established n legend of dev	orm and easily				0
Set no Status scatus pool	e edition ted in legend of des paid to the avange	orm and easily				n

To see the field status by deviation from the standard:

→ At Graph Interface go to Norm;

 \rightarrow Set the norm as **Average annual NDVI in district** (for the winter crops,

- spring crops or arable lands);
- →Click Set norm;

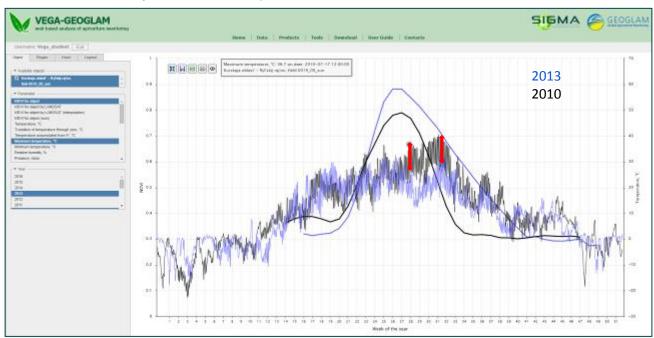
 \rightarrow The graph will be colored according to the legend (from very good to very bad), showing the current status as deviation from the multiyear norm.

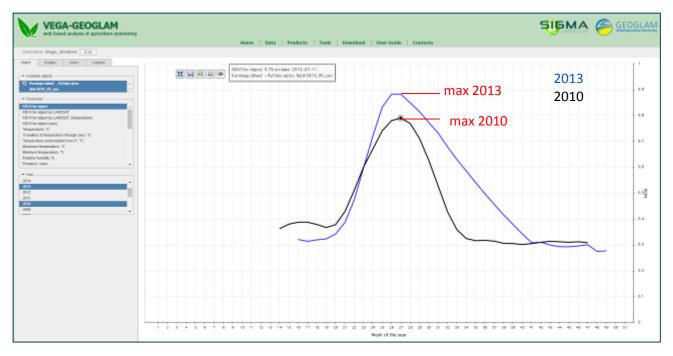
You may set a custom standard by choosing the year-analog or any previously saved norm.

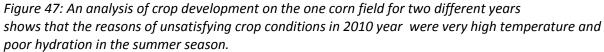
2. Comparison with the other year

To compare the crop conditions of the one field for the two different years:

- → Open **Graph Interface** for the selected field;
- \rightarrow Select the displaying **Parameter**(s) (at fig. 47 NDVI and Maximum temperatures were chosen);
- \rightarrow At **Objects** tab select several years;


 \rightarrow Go to **Legend** and change the NDVI graph style to make it more visible (at fig.47 2010 NDVI graph width is 3);


 \rightarrow Return to **Objects**;


 \rightarrow Turn on **Show/hide points value** and explore the NDVI graphs. Each point is the mean weekly value of NDVI for the field;

 \rightarrow At **Objects** select;

 \rightarrow Turn on **Show/hide points value** and explore the values.

3. Comparison with the other field(s)

To compare several fields with each other a user should create a Group of fields, mark all the fields to compare, add them to the Group and open the graph interface for the group of the fields.

There is a special tab for group creation - **Point Objects** (read more at the <u>Point Objects chapter</u>). To add fields to comparison:

- \rightarrow Go to Data Analysis \rightarrow Point objects;
- → Click Add new Group and set Name, Description and Color for the points. You can create several groups.

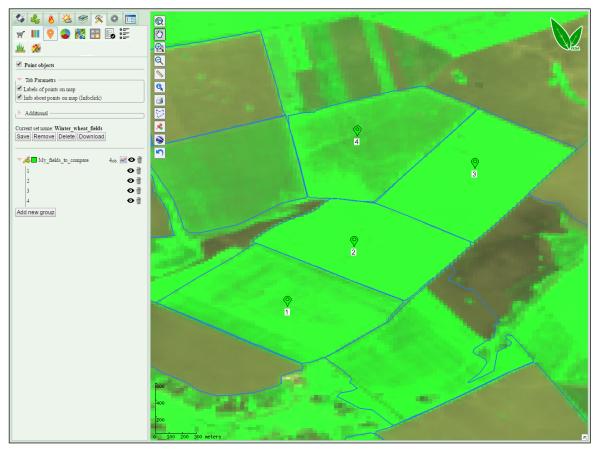


Figure 48: Points on the map.

 \rightarrow Add points (fields) to the group using **Add Point object** and the group of points with edit \swarrow tool;

- \rightarrow Click Open graphics plotting menu for all points in this group
- → Select Fields temporal profile.

Graph Interface opens in new window. Here you can work with NDVI and meteorological parameters time series for the group of the selected fields and compare them with each other.

by clicking on the map. Edit names of the points

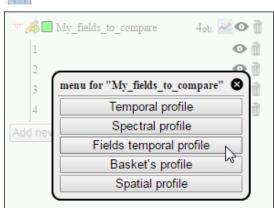


Figure 49: Group of points menu.

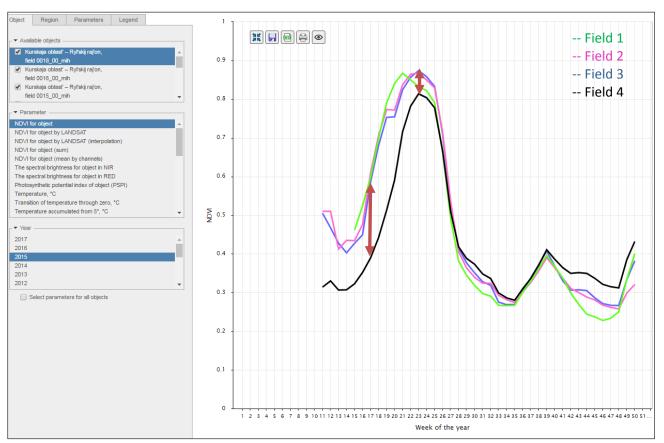


Figure 50: Winter wheat field NDVI comparison.

Figure 51: Weekly NDVI map, that shows average NDVI value for the field, shows that 4th field has a lower NDVI values in comparison with the 1st, 2nsd, 3d fields. All these fields are fields with winter wheat, and for the beginning of May the situation with such low biomass at the 4th field seems abnormal. This may be an indicator of some problems that can lead to the low yield.

NDVI graph for the region

To view and download NDVI time series for Russian regions:

- \rightarrow Open **Graph Interface** for any field in the region;
- \rightarrow Go to **Region tab**;
- → Select the **Region**, **NDVI** (and/or other parameters)
- \rightarrow Select the **Year(s)**;
- \rightarrow To view the average trend select **Multiyear parameter**;
- \rightarrow To download the data click **Export data (CSV)**.

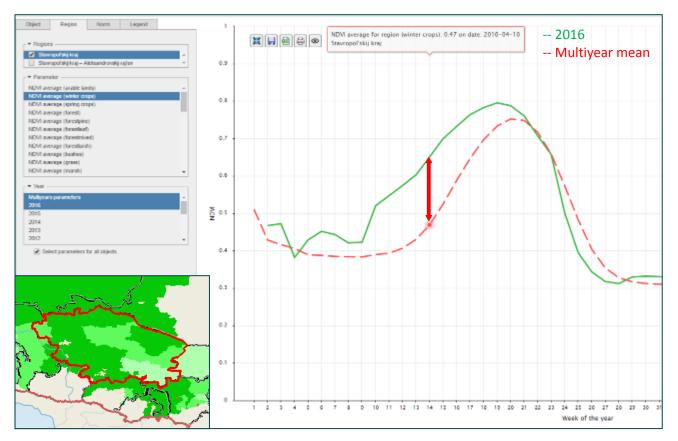


Figure 52: Picture shows extremely early development of winter crops in Stavropol region at the spring 2016. NDVI values exceed the norm more than 25%. NDVI trend analysis already in the beginning of the season allow us to suggest that all phenological stages are going to be shifted for approximately 3 weeks earlier in comparison with the multiannual norm and there are indicators to suggest that winter crop yields would be higher than usual.

Fire data

There is a way to monitor fires on cropland and non-cropland areas in VEGA-GEOGLAM. **Fire data** allows to get actual and archive information about the fire situation globaly. Fire spots are detected with MODIS Thermal Anomalies/Fire MOD14 product (updates few times a day) and then spots are combined into clusters using IKI technologies.

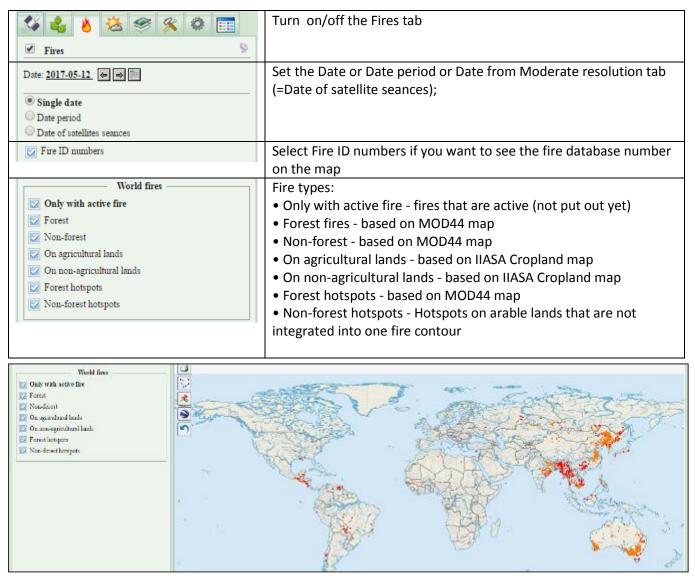


Figure 53: World fires for the 13th of April 2017 according to satellite data

To see the current natural fire situation in the world:

- \rightarrow Go to Full extent [];
- \rightarrow Go to Fires;
- \rightarrow Set the current Date (set as default);
- \rightarrow Select all types of fire.

For each fire there is information about:

- Fire type
- Borders
- Duration
- Area

Use **Query** to get the fire attributive information.

Lo	ongitude: 36.7041° Latitude: 51.9042°				
- F	Russia				
(Central'nyj federal'nyj okrug				
- F	Kurskaja oblasť				
	Schigrovskij raj'on Fire information				
F	ire 851974 (according to satellite monitoring data)				
T	Current state: liquidated 02.09.2016				
	Coordinates: 51º 54' N - 36º 42' E				
н	First observation: 23.08.2016 09:45 GMT				
	Last observation: 23.08.2016 09:55 GMT				
н	Passed by fire: 263 ha				
	(Choose satdata)				
T	his pixel's data for MSI (SENTINEL-2A):				
	hannel 3: 0.134 albedo				
	hannel 4: 0.110 albedo				
C	hannel 8: 0.321 albedo				

Figure 54: Fire information

Fires are often caused by grass burnings on the fields. VEGA-GEOGLAM helps to monitor stubble burning and

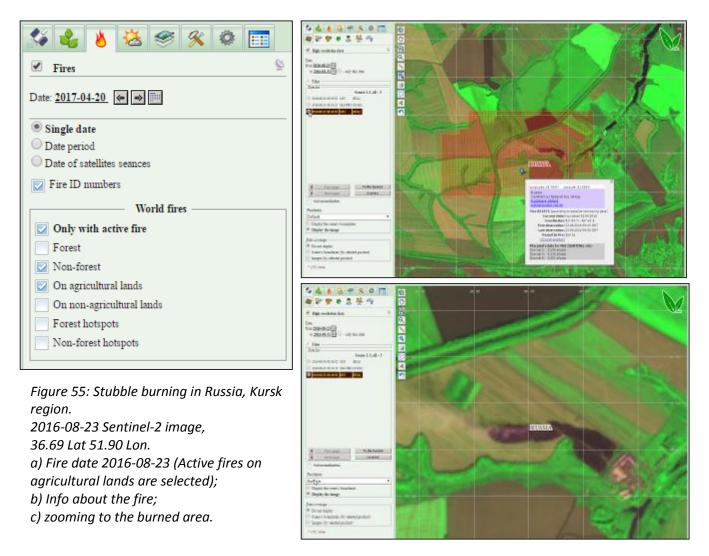
fires on arable and forest lands.

Figure below illustrates the work steps of detection fire on agricultural lands:

ightarrow Navigate to your AOI;

 \rightarrow Go to **Fires (**fig.55, a);

 \rightarrow Set the Date or Date period or Date from Moderate resolution tab (=Date of satellite seances);


 \rightarrow Select Fire ID numbers if you want to see the fire database number;

→Select the **Type of fire;**

 \rightarrow Find and select the satellite image from **Satellite Data** (High or Medium resolution) for the date of the fire or next to it to assess the damages (fig.55, c);

 \rightarrow Use **Query** tool (click on the fire body) to get an additional information about the fire (fig.55, b).

Fire contours are in orange and red (on agricultural lands and on non-agricultural lands); burned areas appeared in deep brown colors at the MODIS image.

Meteorological data

Crop condition assessment and predictions need meteorological information. VEGA-GEOGLAM allows you to get access to the NCEP meteorological data archives.

Data sets are available from 2001 to nowadays with 4 times a day update frequency. Data resolution is 0.5°x 0.5°. Maps and meteorological parameters time series are available (fig.32, fig.33).

Meteorological data list:

- Temperature (minimum, maximum), °C
- Pressure, mbar
- Relative humidity, %
- Total/accumulated precipitation, kg/m²
- Downward/upward longwave/shortwave radiation, W/ m²
- Soil temperature (depth below land surface 10,40,100,200 cm), °C
- Soil humidity (depth below land surface 10,40,100,200 cm), %
- Snow cover, %
- Snow depth, m
- Hydrothermal index
- Normal (mean multiannual) max, mean, min daily temperature; relative humidity; total precipitation.

Sé 🕹 送 🥯 🛠 🔅 📰	Turn on/off the Meteo data tab
Date: <u>2016-05-20</u> ()	Set the Date and Time
 Eurasia data Global data 	Data set: Eurasia data or Global data. Eurasia data set contains more parameters than Global. Global data set contains forecasts (up to 2 weeks).
Wind Wind	Wind displays as direction arrows
*** Isolines Relative humidity, % Show values Turn off filling	Select the parameter (isolines) to display (from meteorological data list). Turn on Show values to see the values of the selected meteorological parameter on the map. Color filling is set as default, you can turn it off.
Transparency: 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%	Set the transparency percent of filling color.

To view weather data on the map:

- \rightarrow Go to **Full extent** or navigate to your AOI;
- ightarrow Go to Meteo data;
- ightarrow Set the **Date** and **Time**;
- → Select data set (Eurasian or Global);
- \rightarrow Check the **Wind** displaying, if nesscesary (displays as direction arrows);
- → Select the **displaying parameter (isolines);**
- \rightarrow Set the **displaying options** (value displaying, transparency options). Selected data will be displayed.

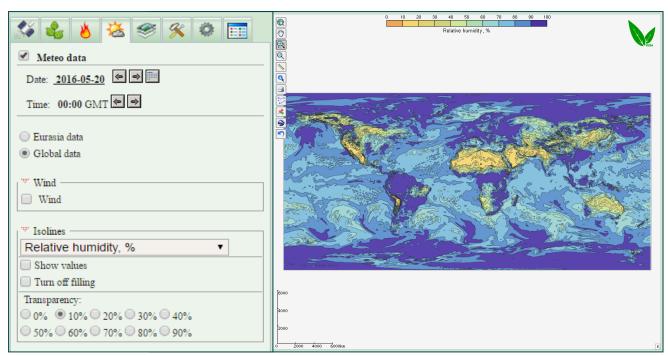


Figure 56: Relative humidity world map with 10% transparency for the May 20, 2016.

To view weather data on the graph:

- \rightarrow Navigate to your AOI;
- \rightarrow Go to Fields vegetation state analysis;
- \rightarrow Select **Season** and turn on field counturs;
- \rightarrow Click on any field with Query;
- \rightarrow Go to graph interface;
- → Set the displaying parameter(s) and year(s);
- \rightarrow To see the average values for the region, go to **Region** tab at graph interface.

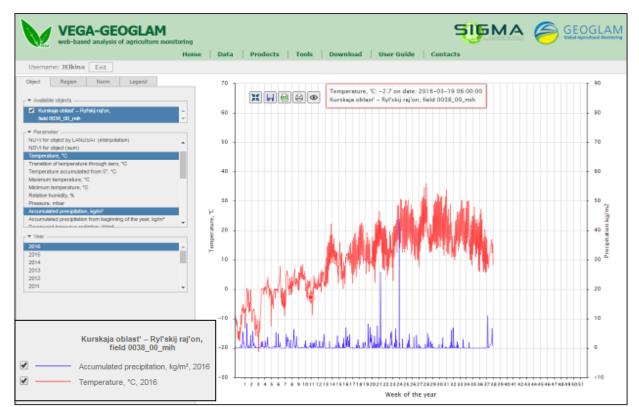


Figure 57: Accumulated precipitation and Temperature in 2016 graph for the field in Kursk regionCopyright © 2017, Space Research Institute of Russian Academy of SciencesPage 62 of 80

Data analysis tools

VEGA-GEOGLAM data processing and analysis tools are located in **Data Analysis** tabs (that are representing the tools) are:

Group of tabs. The

X

- Basket;
- Image color enhancement;
- Point objects;
- Classification;
- User maps;
- Image algebra;
- Indices calculation;
- Band selection;
- Irregularity of vegetation;
- Pallet.

Basket

Basket stores all the images you have selected and added to the Basket at the Satellite Data tabs.

 \rightarrow Select and Add to Basket any image(s) from **Satellite Data** (fig. 58);

ightarrow Go to Data Analysis ightarrow Basket

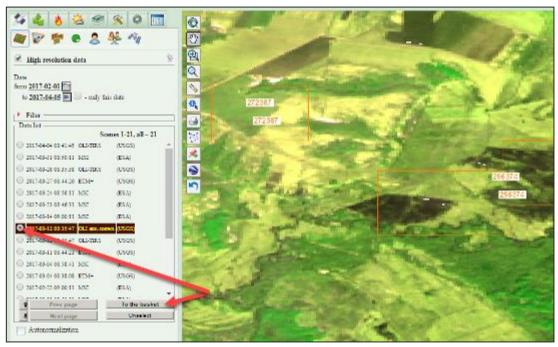


Figure 58: Adding satellite image to the Basket.

Being added to Basket, an image became available to processing using various tools (Color Enhancement, Map algebra, Classification and other) and also it became available to download. Use an option "save the Basket" to save the images from current work session.

You can also add to Basket images/Earth Observation product from other tabs, for example, any result of classification (result map).

 ✓ Log Control Contro	Turn on/off the Basket tab
Selected data:6 2017-03-12 08:35:47 Default (LANDSAT 8) 2017-03-21 08:46:31 Default (SENTINEL-2A) 2017-03-04 08:58:41 Default (SENTINEL-2A) 2017-03-04 08:58:41 NDVI (SENTINEL-2A) 2017-03-21 08:46:31 NDVI (SENTINEL-2A) 2016-12-04 Interpolated weekly RED channel 2016-12-04 Interpolated weekly RED channel 2016-12-04 Interpolated weekly RED channel Model Animation List mode Select all Show entire list Save data list to the file Clear the basket Order data	 Selected data – list of satellite images Animation - use Animation to view them automatically one after one Sort by Date - arrange images by date and view them consistently Show entire list/Shoe selected list – only selected images are available for ordering (downloading) Save data list to the file/Load data list from the file - save the list of these images (in .txt) and then open it at the next work session or send it to your colleague Clear basket – deletes all images from the Basket Order data - download (order) the images.
L [#] Comparison Tools	Comparison tools - compare two images using slider tools
Georeferencing tools	Georeferencing tools – allows to manually georeference a satellite image.

How to download an image

- \rightarrow Find images and add them to the **Basket**;
- \rightarrow Go to **Data Analysis** \rightarrow **Basket**;
- → Select an image(s) to download in the Basket list (you can use an option Select All);
- \rightarrow Click Order data;
- \rightarrow In the pop-up window you'll see list of ordering scenes. **Confirm** your choice;
- \rightarrow You'll receive e-mail with the download link.

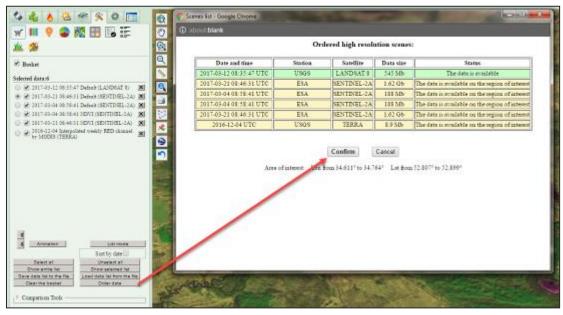


Figure 59: Satellite image downloading.

Copyright © 2017, Space Research Institute of Russian Academy of Sciences

Data comparison tools

There are two slider tools to help you with comparison of two satellite images: Transparency slider and Swipe Tool. To use these tools first you should choose a Basis image and an Image to compare.

Figure 60: Slider tools are usable for visual landcover change assessment. In this picture:

Scene A – 2016-04-27 Sentinel 1-A image, 10 m spatial resolution Scene B - 2014-04-24 Landsat 8, 30 m spatial resolution Comparing two images from 2014 and from 2016 years, we can notice some landcover changes owing to an extensive environmental management (on the top: forest, on the bottom: amber mining. Difference of satellites resolution is also noticeable.

To use slider tools:

- → Navigate to your **Area of Interest**;
- \rightarrow Go to Satellite Data;
- \rightarrow Find and select the scene A (basis image), select it and put to the **Basket**;
- \rightarrow Find and select the scene B (an image to compare), select it (it is not necessary to put it to the Basket);
- ightarrow Go to Basket;
- \rightarrow Select the scene A;
- → Open Comparison Tools block;
- \rightarrow Move Transparency slider or use Swipe slider. Scene A will slide over the scene B.

Figure 61: visual image analysis is a good change detection method. In this picture: water reservoir got smaller in 29 years.

Scene A – 2014-08-23 Landsat 8, 30 m spatial resolution Scene B - 1985-08-23 Landsat 5, 80 m spatial resolution

Figure 61: Comparison Tool.

Point objects

There is a special tab for group creation - **Point Objects.** To add fields to comparison:

\rightarrow Go to Data Analysis \rightarrow Point objects;

→ Click Add new Group and set Name, Description and Color for the points. You can create several groups.

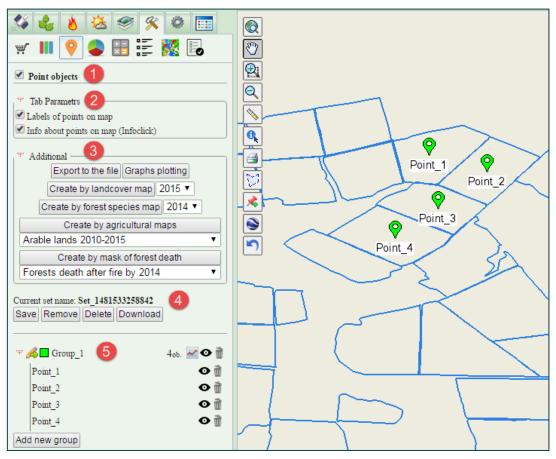


Figure 62: Point object tab:

- 1- Turn on/off the **Point objects** tab
- 2- Displaying options (show labels)
- 3- Additional options (group of points downloading, creating points from thematic maps)
- 4- Set of groups options (save, remove set of groups)
- 5- Group of point's workspace
- \rightarrow Make the Group editable;

→ Using Add point objects instrument add points (samples of the object from this type of objects) to the group

Group of points workspace:

- 1- Open/close the Group, change the color
- 2- Amount of the objects
- 3- Open Graph time series Interface
- 4- Show/hide point
- 5- Point names
- 6- Deleting the point/the Group

Figure 63: Group of point's workspace.

Classification tool

Satellite image classification allows to group pixels of a satellite image to separate classes according to certain parameters. This can be used for definite features identification and for thematic maps creation. Using classification you can separate arable and non-arable lands, identify land use types, identify winter crops fields, control land usage.

The basic requirement for image classification is image itself but the other important thing is knowledge of the region for which you are going to classify the image.

 \rightarrow Go to Data Analysis \rightarrow Classification

There are two main types of image classification:

1. Supervised classification - a user selects representative samples for each land cover class in the digital image, the call training samples. The image classification software uses the training sites to identify the land cover classes in the entire image.

VEGA allows to you to use training samples from the MODIS-derived thematic maps and to classify images with higher resolution, such as Landsat or Sentinel.

2. Unsupervised classification - requires no advance information about the classes of interest. Rather, it examines the data and breaks it into the most prevalent natural spectral groupings, or clusters, present in the data.

Pixels are grouped based on the reflectance properties of pixels. User identifies the number of clusters to generate and which bands to use. The analyst then identifies these clusters as landcover classes through a combination of familiarity with the region and ground truth visits.

Classification methods used in VEGA-GEOGLAM are presented in Table 6.

Method	Туре	Description
Clustering	Unsupervised	http://grass.osgeo.org/grass64/manuals /i.cluster.html
Sequential Maximum a Posterior (SMAP) Algorithm	Supervised	http://grass.osgeo.org/grass64/manuals /i.smap.html
Maxlik (Maximum-likelihood discriminant analysis classifier)	Supervised	http://grass.osgeo.org/grass64/manuals /i.maxlik.html
One-class clustering	Supervised	The method performed on the basis of Clustering with the following cluster selection according to the training sample.

Table 6. Classification methods

Classification tab provide classification tools with configurable options.

off the Classification tab
cation results tion opens after the performed classification clusters and management buttons)^ e of classification task, the used data, the tatus (saved/not saved in VEGA-GEOGLAM). re management buttons: To the basket (put ult map in the Basket), Get GeoTIFF (download ult image), Add in map (Add the result image Jser Map tab). ted classes: here the list of clusters is ed. ame, color are editable parameters. s presence per class for each cluster, as well as r class (in ha and in pixels).
assification parameters setting:
d data – selected scene and bands (choose he Select Bands tab) d – select the classification method; reparation parameters – choose the area for ration: entire scene or visible extent; ation of several scenes (mosaic creation). extent area is set as default. arameters – define a mask for classification. re various masks available. You may perform stification within the fields borders (active from the Field vegetation tab would be used. gon – you may perform classification within ders of the polygon. To draw a polygon, use wing tool. ditional parameters – classification fine aphic correction – automatic topographic ton for every band. g results – the result of the classification can red to remove various noises. Mode method x window is set as default.

General satellite image classification steps in VEGA-GEOGLAM:

1. Choose the scene and the bands:

- \rightarrow Navigate to **your AOI**;
- \rightarrow Go to **Satellite data**. Find, select and add to **Basket** the scene(s) to classify (fig.64, a);
- \rightarrow Go to Data Analysis \rightarrow Bands selection and select the bands of the image(s) (fig.64, b);

Pay attention to the field in green color: they all seem quite similar in the "natural color" band synthesis, while they are fields with the different crops. For cropland mapping we should use NIR and RED channels (4, 5, 6 for Landsat 8 OLI-TIRS) to separate different crops from each other, based on their spectral reflectance in these channels.

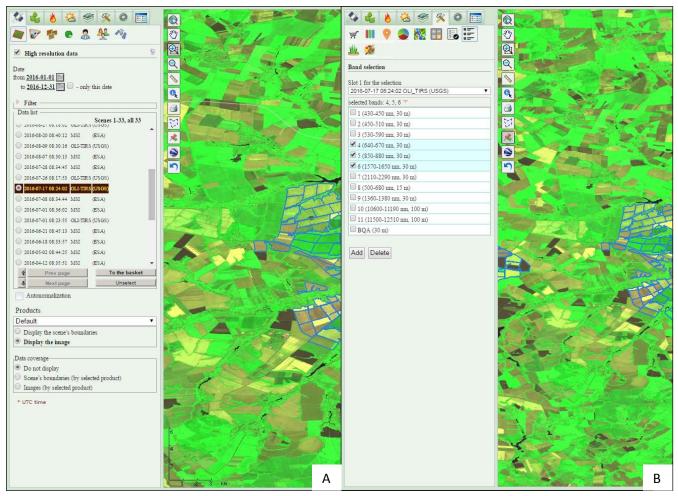


Figure 64: a) find and add the satellite image to the Basket, b) select the bands.


2. Prepare data

 \rightarrow for supervised classification set the training samples (points) at **Point objects**;

During classification all pixels of the image will be assigned to the classes that the specified by user. Therefore, you need to create as many groups of points as many clusters you want to see in result map. Create group of points for each type of classification objects. Collect approximately the same number of points for each type of object.

You may use any base maps and satellite images for image interpretation and to the training samples collection. Figure 54, a illustrates usage of the high resolution Digital Globe map. Winter satellite images are good for forest detection. Figure 54, b illustrates the usage of crop information for some fields. It is very helpful information that will allow us to get the cropland map for wider area (all scene or visible extent).

Figure 65, c illustrates the usage of agricultural clean fallow map (blue spots are clean fallows).

Figure 65: classification steps

Create as many groups (classes) as many clusters you want to see in result map. Create group of points for each type of classification objects. Collect approximately the same number of points for each type of object. Put points precisely in the object boundaries, do not mix points from different classes (fig.66, a). Figure 66, b illustrates the final phase of collecting the training samples. 10 groups of different objects were created, from 53 to 77 points in each.

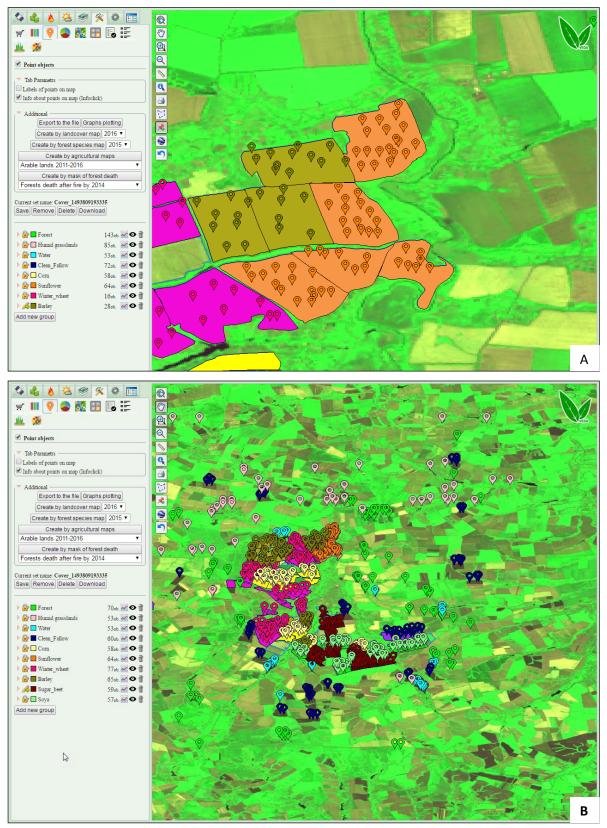


Figure 66: the training samples collection

2. Choose a classification method and define the parameters When the training samples collection is finished:

\rightarrow Go to Data Analysis \rightarrow Classification;

 \rightarrow Define the classification method and classification parameters: define an area for classification (visible extent will be classified as default), a mask for classification, filtering parameters and other, if necessary. Figure 67, a shows that Maxlik (supervised) classification method was chosen with the Filtering mode method with 3 px window size.

 \rightarrow At **Classification** click Classify. (fig.67, b)

The task will be queued for processing and will be displayed in the same tab after it completes.

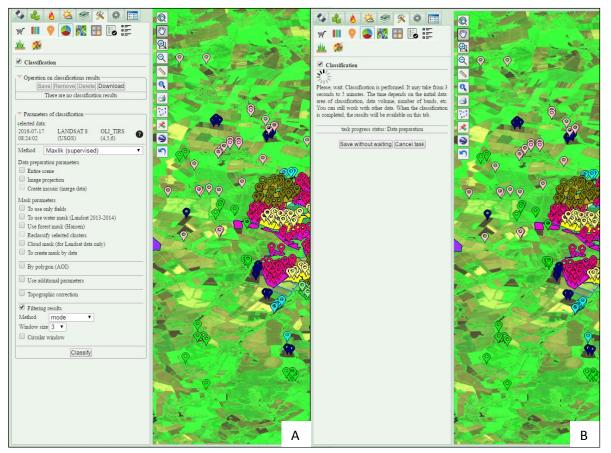


Figure 67: classification settings

Classification result would be displayed at the interface and the Current classification section with the results of classification (list of clusters with the presence per class) will be appear at the Classification tab (fig, a).

 \rightarrow You may save the result and training samples in VEGA-GEOGLAM for further work, download the result as GEOTIFF image, create a map, perform a reclassification or change any classification parameter and to classify the original image once more.

Figure 68, b illustrates the repeated classification with the other Filtering settings (5 px window instead of 3px).

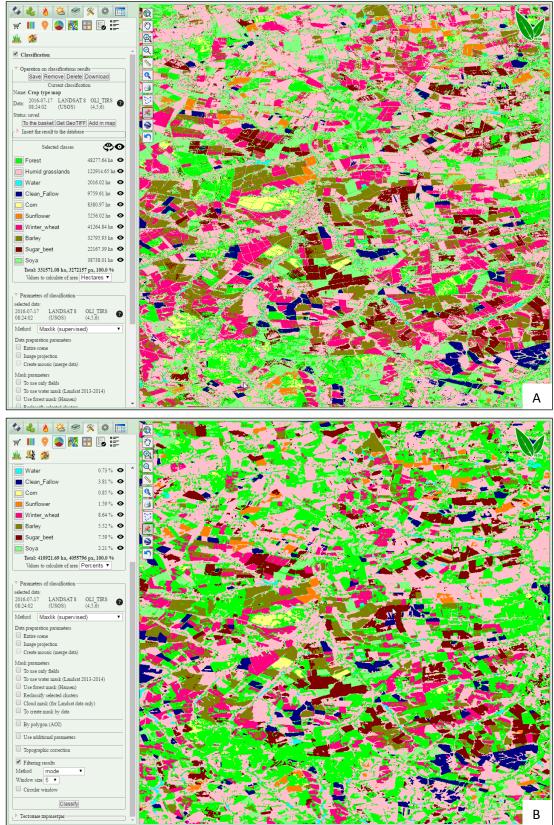


Figure 68: Result of satellite image classification – crop type map for the territory in Kursk region. Crop type data for the only 20 fields was used, as well as data from clean fallow map and data derived from the visual image interpretation.

Indices calculation

Satellite-derived indices are indicators of the state of objects (vegetation, atmosphere, water objects) that results from mathematical operations with different satellite image's spectral bands. To create an index map from raw satellite data about light waves mathematical formulas are applied. Index maps are usable in vegetation conditions and vegetation developing monitoring, yield prediction, climatic variability.

There is **Indices calculation** tab in VEGA-GEOGLAM that allows easily to calculate an index from the wide range of satellite-derived indexes, such as NDVI, EVI, ChIRI and other widely used ones.

Image: Selected Data 2012-05-22 10:26:41 EO-1(HYPERION)	Turn on/off the Indices calculation tab Selected data section (data from the Basket)
Device HYPERION	Choose the satellite to see the available indices
Application Agriculture	Choose the index type (Agriculture/Atmosphere/Fire/Forestry/Soil/Vegetation). There is a certain type subset for an each satellite.
 List of indexes ARVI ChIRI CI FRI HI ND800/680 NDNI NDVI SGI Reset Delete Edit Apply 	From the List of indices choose the index.
[#] Description of the index Chlorophyll Reflection Index (B40-B36)/(B40+B36-2*B10) where: B10 (447.17 нм, 30 м), B36 (711.72 нм, 30 м), B40 (752.43 нм, 30 м), Device: HYPERION	Description of the index window (formula window)

To calculate the index:

- \rightarrow Find, select and put into the **Basket** the high resolution satellite image;
- \rightarrow In the **Basket** select the one image;
- \rightarrow Go to Indices calculation;
- ightarrow You will see the **selected image**;

 \rightarrow From the drop-down list of the satellites choose the satellite to see the available indices;

 \rightarrow From the drop-down list of the indices types choose the index type

(Agriculture/Atmosphere/Fire/Forestry/Soil/Vegetation);

 \rightarrow From the List of indices choose the index. The index formulas will appear in the Description of the index window;

 \rightarrow Click **Apply** to start the calculation. The result of the calculation is a new image (fig.69).

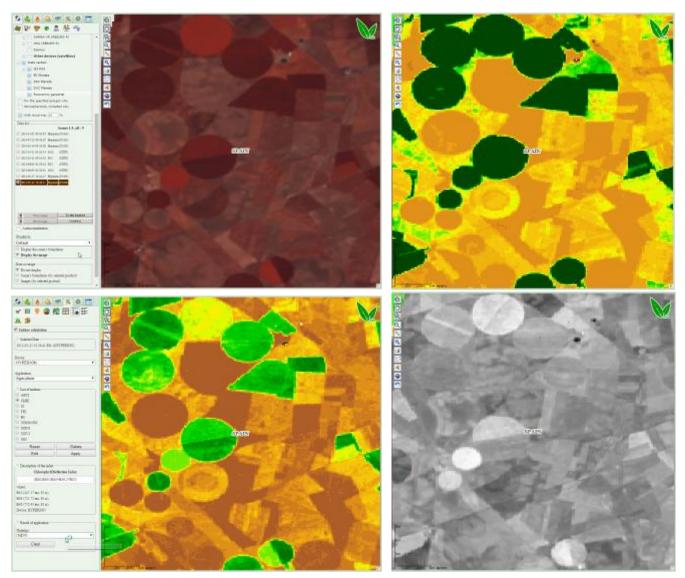
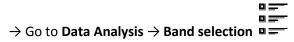



Figure 69: indices calculation example.

Band selection

At the Band selection tab a user chooses spectral channels of the scenes from the **Basket** (you should preliminary find and put satellite images into the Basket) to use at any image classification task (**Classification tab**) or at any raster calculation task (**Map algebra tab**).

	🐝 🍓 👌 送 🧇 🌾 💷
	🛒 III 💡 💊 🎇 📰 🖪 📰
	<u>//// %</u>
	Band selection
	Band selection
1	Slot 1 for the selection 2017-04-20 03:45:41 MSI (ESA)
0	selected bands: 4. 8 ""
9	□ 1 (433-453 nm, 60 m)
	2 (456-523 nm, 10 m)
	3 (542-577 nm, 10 m)
	✓ 4 (650-680 nm, 10 m)
	5 (698-713 nm, 20 m)
	6 (732-747 nm, 20 m)
	7 (793-773 nm, 20 m)
	✓ 8 (785-900 nm, 10 m)
	8A (855-875 nm, 20 m)
	9 (935-955 nm, 60 m)
	10 (1365-1395 nm, 60 m)
	11 (1565-1655 nm, 20 m)
	12 (2100-2280 nm, 20 m)
	Slot 2 for the selection
	2013-04-12 05:05:53 ETM_PLUS (USGS) V
	selected bands: 3, 4 ""
	Slot 3 for the selection
	2005-04-28 04:21:34 ETM_PLUS (USGS)
	selected bands: 3, 4, 5, 6.1 ""
3	Add Delete

To choose satellite bands:

\rightarrow Go to **Band selection**;

→ From the drop-down list of the satellite images from the Basket (Slot 1 for the selection, fig. 7 (1)) choose the satellite image. List of corresponded bands will appear; → Select the required bands (selected bands, fig. 7 (2)); → Repeat the two first steps for the other images and bands by clicking Add - it's adding a new cell. To delete the last one use Delete (fig. 7 (3)).

The band designations for an each satellite you may found at the official satellite websites:

Landsat - <u>https://landsat.usgs.gov/what-are-band-designations-landsat-satellites;</u> Sentinel-2A - <u>https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial;</u> MODIS https://modis.gsfc.nasa.gov/about/specifications.php.

Copyright © 2017, Space Research Institute of Russian Academy of Sciences

Palette

→ Go to Data Analysis → Palette 🧏

Paltte tool allows user to change the pallet of the image or to display only some values higher or below a prescribed threshold.

Tool can be used with the moderate resolution imagery (MODIS, AVHRR, VIIRS, MSU-MR) and with Landsat 7, Landsat 8, Sentinel-2A NDVI products.

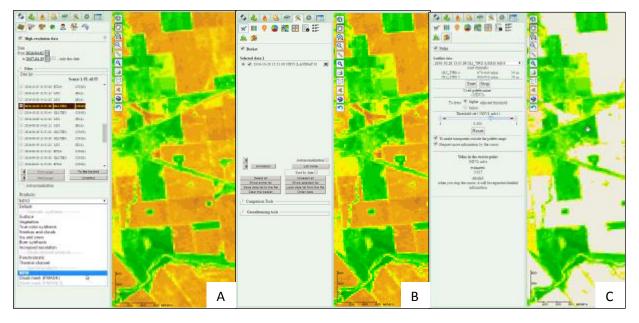
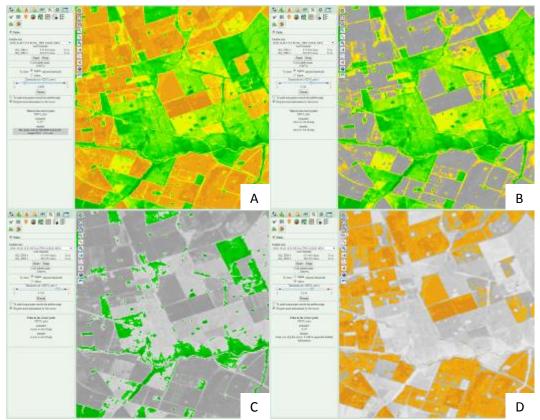


Fig. 70 Palette tool allows to color the data only above (or below) a prescribed threshold. It is usable for detecting areas with a certain NDVI values at the satellite images in VEGA-GEOGLAM.

64	%	2	8	迻		K	Ø	
	<i>.</i>		9		<u>88</u>	+=	•	
1	<u>L</u>	6						
1	Pall	et						
S	atellite	data:						
2	2016-1	0-28	13:51:	09 OLI	TIRS (USGS)	NDVI	•
T				used	l channe			
		I_TI				540 mki		30 m 30 m
-	01	.I_TI	KS D			350 mki	m	30 m
63				Sta	rtSt	ор		
•					alette n	ame:		
Υ.					NDVI»			
A		То	draw	hig	^{her} adj	usted th	reshold	
.				el	ow			
			Thre	eshold s	et (ND	VI, ndv	ni)	
	. ■	-						▶
6	-1				0.343			1
				F	Reset			
0	7 🔲 To make transparent outside the palette range							
8	8 🗹 Request more information by the cursor							
	Value in the cursor point NDVI, ndvi							
9	estimated:							
Τ.				d	etailed:			
	wher	ı you	stop tl		or, it wil ormatio		uested (detailed
_								

To use Palette tool to set up the way NDVI will be displayed:

- \rightarrow Navigate to your AOI
- \rightarrow Go to Satellite data \rightarrow High resolution data
- \rightarrow in **Products** select NDVI (a)
- \rightarrow Find and select the the appropriate satellite image
- \rightarrow Put it (NDVI map of chosen image) to the **Basket (b)**
- \rightarrow Go to Data Analysis \rightarrow Pallet (c)


Now you can turn off the Satellite images and Basket tabs.

At the Palette tab (1):

- \rightarrow The chosen image will be shown at Satellite data window (2);
- \rightarrow Press Start (3);
- \rightarrow The Pallet name applied to the scene (4);
- \rightarrow Specify displaying options (higher or below the threshold) (5);
- \rightarrow Set the **Treshold** by moving the slider left or right (6);
- \rightarrow Press reset to reset the treshold;

 \rightarrow Use the **To make transparent outside the palette range** option (7) to display only the filtered values (you may use any other satellite image at the transparent area as a base map);

 \rightarrow Use the **Request more information by the cursor option (8)** to get the pixel (NDVI) value (9). Tab shows the pixel value for cursor pointed pixel.

Figure 71: an example of the Palette tab usage for the intense vegetation and land without vegetation detection.

- a The original image (LANDSAT 8 NDVI map, 2016-10-28, the Argentinean SIGMA-JECAM test site);
- b show all NDVI values above the 0.343;
- c show all NDVI values above the 0.716 (healthy vegetation);
- d show all NDVI values below the 0.343 (poor vegetation).

IV. HOW-TOs

- How to register
- How to navigate to your area of interest (AOI)
- How to search and find satellite images
- <u>How to download an image</u>
- How to use slider tools to compare two satellite images
- How to create a field (a polygon object) to monitor
- How to work with Field Passport
- How to get NDVI map for the chosen area
- How to view NDVI and meteorological parameter time series for the field or region
- How to compare the current NDVI trend with the multiannual standard (norm)
- How to compare group of fields by NDVI and meteorological parameter graphs
- How to assess the crop development in a field with:
- <u>Satellite image interpretation;</u>
- NDVI graphs and maps;
- <u>Crop status cartograms;</u>
- How to assess land usage at you area of interest with:
- VEGA-GEOGLAM thematic maps;
- Image classification;
- How to upload your data to the system

ACRONYMS & GLOSSARY

	Area Of Interest
AOI	Area Of Interest
API	Application Programming Interface
CSV	Comma Separated Value
EO	Earth Observation
GEOGLAM	Global Agricultural Monitoring Initiative
GIS	Geographic Information System
HR	High Resolution
ISS	International Space Station
JECAM	Joint Experiment of Crop Assessment and Monitoring
MR	Moderate Resolution
NDVI	Normalized Difference Vegetation Index
R&D	Research And Development
SIGMA	Stimulating Innovation for Global Monitoring of Agriculture
VCNI	Weekly Vegetation Condition Normal Index
WVCI	Weekly Vegetation Conditions Index